Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Res Sq ; 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38343820

RESUMEN

Fluorescence guided surgery (FGS) facilitates real time tumor delineation and is being rapidly established clinically. FGS efficacy is tied to the utilized dye and provided tumor contrast over healthy tissue. Apoptosis, a cancer hallmark, is a desirable target for tumor delineation. Here, we preclinically in vitro and in vivo, validate an apoptosis sensitive commercial carbocyanine dye (CJ215), with absorption and emission spectra suitable for near infrared (NIR, 650-900nm) and shortwave infrared (SWIR, 900-1700nm) fluorescence imaging (NIRFI, SWIRFI). High contrast SWIRFI for solid tumor delineation is demonstrated in multiple murine and human models including breast, prostate, colon, fibrosarcoma and intraperitoneal colorectal metastasis. Organ necropsy and imaging highlighted renal clearance of CJ215. SWIRFI and CJ215 delineated all tumors under ambient lighting with a tumor-to-muscle ratio up to 100 and tumor-to-liver ratio up to 18, from 24 to 168 h post intravenous injection with minimal uptake in healthy organs. Additionally, SWIRFI and CJ215 achieved non-contact quantifiable wound monitoring through commercial bandages. CJ215 provides tumor screening, guided resection, and wound healing assessment compatible with existing and emerging clinical solutions.

2.
J Control Release ; 364: 312-325, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37884210

RESUMEN

Cell membrane-derived particles (Mp) are rounded membrane-enclosed particles that are shed from tumor cells. Mp are formed from tumor membranes and are capable of tumor targeting and immunotherapeutic agents because they share membrane homology with parental cells; thus, they are under consideration as a drug delivery vehicle. Prostate-specific membrane antigen (PSMA), a transmembrane glycoprotein with enzymatic functionality, is highly expressed in Mp and extracellular vesicles (EV) from prostate cancer (PCa) with poor clinical prognosis. Although PSMA expression was previously shown in EV and Mp isolated from cell lines and from the blood of patients with high-grade PCa, no pathophysiological effects have been linked to PCa-derived Mp. Here, we compared Mp from PSMA-expressing (PSMA-Mp) and PSMA-non-expressing (WT-Mp) cells side by side in vitro and in vivo. PSMA-Mp can transfer PSMA and new phenotypic characteristics to the tumor microenvironment. The consequence of PSMA transfer to cells and increased secretion of vascular endothelial growth factor-A (VEGF-A), pro-angiogenic and pro-lymphangiogenic mediators, with increased 4E binding protein 1 (4EBP-1) phosphorylation.


Asunto(s)
Neoplasias de la Próstata , Factor A de Crecimiento Endotelial Vascular , Masculino , Humanos , Neoplasias de la Próstata/patología , Membrana Celular/metabolismo , Microambiente Tumoral
3.
bioRxiv ; 2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37609216

RESUMEN

The cascade of events leading to tumor formation includes induction of a tumor supporting neovasculature as a primary hallmark of cancer. Developing vasculature is difficult to evaluate in vivo but can be captured using microfluidic chip technology and patient derived cells. Herein, we established an on chip approach to investigate the mechanisms promoting tumor vascularization and vascular targeted therapies via co-culture of metastatic renal cell carcinoma spheroids and endothelial cells in a 3D environment. Our model permitted real-time, high-resolution observation and assessment of tumor-induced angiogenesis, where endothelial cells sprout towards the tumor and mimic a vascular network. Bevacizumab, an angiogenic inhibitor, disrupted interactions between vessels and tumors, destroying the vascular network. The on chip approach enabled assessment of endothelial cell biology, vessel's functionality, drug delivery, and molecular expression of PSMA. Finally, observations in the vascularized tumor on chip permitted direct and conclusive quantification of this therapy in weeks as opposed to months in a comparable animal model. Teaser: Vascularized tumor on microfluidic chip provides opportunity to study targeted therapies and improves preclinical drug discovery.

4.
J Nucl Med ; 64(10): 1647-1653, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37620049

RESUMEN

Shortwave infrared (900-1,700 nm) fluorescence imaging (SWIRFI) has shown significant advantages over visible (400-650 nm) and near-infrared (700-900 nm) fluorescence imaging (reduced autofluorescence, improved contrast, tissue resolution, and depth sensitivity). However, there is a major lag in the clinical translation of preclinical SWIRFI systems and targeted SWIRFI probes. Methods: We preclinically show that the pH low-insertion peptide conjugated to indocyanine green (pHLIP ICG), currently in clinical trials, is an excellent candidate for cancer-targeted SWIRFI. Results: pHLIP ICG SWIRFI achieved picomolar sensitivity (0.4 nM) with binary and unambiguous tumor screening and resection up to 96 h after injection in an orthotopic breast cancer mouse model. SWIRFI tumor screening and resection had ambient light resistance (possible without gating or filtering) with outstanding signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) values at exposures from 10 to 0.1 ms. These SNR and CNR values were also found for the extended emission of pHLIP ICG in vivo (>1,100 nm, 300 ms). Conclusion: SWIRFI sensitivity and ambient light resistance enabled continued tracer clearance tracking with unparalleled SNR and CNR values at video rates for tumor delineation (achieving a tumor-to-muscle ratio above 20). In total, we provide a direct precedent for the democratic translation of an ambient light resistant SWIRFI and pHLIP ICG ecosystem, which can instantly improve tumor resection.


Asunto(s)
Verde de Indocianina , Neoplasias , Animales , Ratones , Ecosistema , Imagen Óptica/métodos
5.
Glia ; 71(6): 1481-1501, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36802096

RESUMEN

NG2 glia represents a distinct type of macroglial cells in the CNS and is unique among glia because they receive synaptic input from neurons. They are abundantly present in white and gray matter. While the majority of white matter NG2 glia differentiates into oligodendrocytes, the physiological impact of gray matter NG2 glia and their synaptic input are still ill defined. Here, we asked whether dysfunctional NG2 glia affect neuronal signaling and behavior. We generated mice with inducible deletion of the K+ channel Kir4.1 in NG2 glia and performed comparative electrophysiological, immunohistochemical, molecular and behavioral analyses. Kir4.1 was deleted at postnatal day 23-26 (recombination efficiency about 75%) and mice were investigated 3-8 weeks later. Notably, these mice with dysfunctional NG2 glia demonstrated improved spatial memory as revealed by testing new object location recognition while working and social memory remained unaffected. Focussing on the hippocampus, we found that loss of Kir4.1 potentiated synaptic depolarizations of NG2 glia and stimulated the expression of myelin basic protein while proliferation and differentiation of hippocampal NG2 glia remained largely unaffected. Mice with targeted deletion of the K+ channel in NG2 glia showed impaired long-term potentiation at CA3-CA1 synapses, which could be fully rescued by extracellular application of a TrkB receptor agonist. Our data demonstrate that proper NG2 glia function is important for normal brain function and behavior.


Asunto(s)
Neuroglía , Proteoglicanos , Ratones , Animales , Proteoglicanos/metabolismo , Neuroglía/metabolismo , Neuronas/metabolismo , Oligodendroglía/metabolismo , Plasticidad Neuronal , Antígenos/metabolismo
6.
J Nucl Med ; 64(1): 177-182, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35738902

RESUMEN

Medical radioisotopes produce Cerenkov luminescence (CL) from charged subatomic particles (ß+/-) traveling faster than light in dielectric media (e.g., tissue). CL is a blue-weighted and continuous emission, decreasing proportionally to increasing wavelength. CL imaging (CLI) provides an economic PET alternative with the advantage of also being able to image ß- and α emitters. Like any optical modality, CLI is limited by the optical properties of tissue (scattering, absorption, and ambient photon removal). Shortwave-infrared (SWIR, 900-1700 nm) CL has been detected from MeV linear accelerators but not yet from keV medical radioisotopes. Methods: Indium-gallium-arsenide sensors and SWIR lenses were mounted onto an ambient light-excluding preclinical enclosure. An exposure and processing pipeline was developed for SWIR CLI and then performed across 6 radioisotopes at in vitro and in vivo conditions. Results: SWIR CL was detected from the clinical radioisotopes 90Y, 68Ga, 18F, 89Zr, 131I, and 32P (biomedical research). SWIR CLI's advantage over visible-wavelength (VIS) CLI (400-900 nm) was shown via increased light penetration and decreased scattering at depth. The SWIR CLI radioisotope sensitivity limit (8.51 kBq/µL for 68Ga), emission spectrum, and ex vivo and in vivo examples are reported. Conclusion: This work shows that radioisotope SWIR CLI can be performed with unmodified commercially available components. SWIR CLI has significant advantages over VIS CLI, with preserved VIS CLI features such as radioisotope radiance levels and dose response linearity. Further improvements in SWIR optics and technology are required to enable widespread adoption.


Asunto(s)
Radioisótopos de Galio , Luminiscencia , Radioisótopos , Tomografía de Emisión de Positrones/métodos
7.
Nat Biomed Eng ; 6(5): 559-568, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35411113

RESUMEN

In oncology, the feasibility of Cerenkov luminescence imaging (CLI) has been assessed by imaging superficial lymph nodes in a few patients undergoing diagnostic 18F-fluoro-2-deoxyglucose (18F-FDG) positron emission tomography/computed tomography (PET/CT). However, the weak luminescence signal requires the removal of ambient light. Here we report the development of a clinical CLI fiberscope with a lightproof enclosure, and the clinical testing of the setup using five different radiotracers. In an observational prospective trial (ClinicalTrials.gov identifier NCT03484884 ) involving 96 patients with existing or suspected tumours, scheduled for routine clinical FDG PET or 131I therapy, the level of agreement of CLI with standard-of-care imaging (PET or planar single-photon emission CT) for tumour location was 'acceptable' or higher (≥3 in the 1-5 Likert scale) for 90% of the patients. CLI correlated with the concentration of radioactive activity, and captured therapeutically relevant information from patients undergoing targeted radiotherapy or receiving the alpha emitter 223Ra, which cannot be feasibly imaged clinically. CLI could supplement radiological scans, especially when scanner capacity is limited.


Asunto(s)
Fluorodesoxiglucosa F18 , Neoplasias , Humanos , Luminiscencia , Mediciones Luminiscentes/métodos , Neoplasias/diagnóstico por imagen , Tomografía Computarizada por Tomografía de Emisión de Positrones , Tomografía de Emisión de Positrones/métodos , Estudios Prospectivos
8.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-35064078

RESUMEN

Prostate-specific membrane antigen (PSMA) is highly overexpressed in most prostate cancers and is clinically visualized using PSMA-specific probes incorporating glutamate-ureido-lysine (GUL). PSMA is effectively absent from certain high-mortality, treatment-resistant subsets of prostate cancers, such as neuroendocrine prostate cancer (NEPC); however, GUL-based PSMA tracers are still reported to have the potential to identify NEPC metastatic tumors. These probes may bind unknown proteins associated with PSMA-suppressed cancers. We have identified the up-regulation of PSMA-like aminopeptidase NAALADaseL and the metabotropic glutamate receptors (mGluRs) in PSMA-suppressed prostate cancers and find that their expression levels inversely correlate with PSMA expression and are associated with GUL-based radiotracer uptake. Furthermore, we identify that NAALADaseL and mGluR expression correlates with a unique cell cycle signature. This provides an opportunity for the future study of the biology of NEPC and potential therapeutic directions. Computationally predicting that GUL-based probes bind well to these targets, we designed and synthesized a fluorescent PSMA tracer to investigate these proteins in vitro, where it shows excellent affinity for PSMA, NAALADaseL, and specific mGluRs associated with poor prognosis.


Asunto(s)
Antígenos de Superficie/metabolismo , Glutamato Carboxipeptidasa II/metabolismo , Glutamatos , Lisina , Sondas Moleculares , Neoplasias de la Próstata/diagnóstico , Neoplasias de la Próstata/metabolismo , Urea , Animales , Antígenos de Superficie/química , Sitios de Unión , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Técnica del Anticuerpo Fluorescente , Colorantes Fluorescentes/síntesis química , Colorantes Fluorescentes/química , Expresión Génica , Glutamato Carboxipeptidasa II/química , Glutamatos/química , Humanos , Inmunohistoquímica , Lisina/química , Masculino , Ratones , Modelos Moleculares , Conformación Molecular , Imagen Molecular/métodos , Sondas Moleculares/química , Neoplasias de la Próstata/genética , Unión Proteica , Receptores de Ácido Kaínico/genética , Receptores de Ácido Kaínico/metabolismo , Relación Estructura-Actividad , Urea/análogos & derivados , Urea/química
9.
Cancer Lett ; 513: 26-35, 2021 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-33989707

RESUMEN

Cytomegalovirus (CMV) is widespread in humans and has been implicated in glioblastoma (GBM) and other tumors. However, the role of CMV in GBM remains poorly understood and the mechanisms involved are not well-defined. The goal of this study was to identify candidate pathways relevant to GBM that may be modulated by CMV. Analysis of RNAseq data after CMV infection of patient-derived GBM cells showed significant upregulation of GBM-associated transcripts including the MET oncogene, which is known to play a role in a subset of GBM patients. These findings were validated in vitro in both mouse and human GBM cells. Using immunostaining and RT-PCR in vivo, we confirmed c-MET upregulation in a mouse model of CMV-driven GBM progression and in human GBM. siRNA knockdown showed that MET upregulation was dependent on CMV-induced upregulation of NF-κB signaling. Finally, proneural GBM xenografts overexpressing c-MET grew much faster in vivo than controls, suggesting a mechanism by which CMV infection of tumor cells could induce a more aggressive mesenchymal phenotype. These studies implicate the CMV-induced upregulation of c-MET as a potential mechanism involved in the effects of CMV on GBM growth.


Asunto(s)
Neoplasias Encefálicas/virología , Infecciones por Citomegalovirus/genética , Glioblastoma/virología , FN-kappa B/metabolismo , Proteínas Proto-Oncogénicas c-met/metabolismo , Animales , Neoplasias Encefálicas/patología , Infecciones por Citomegalovirus/patología , Glioblastoma/patología , Humanos , Ratones , Regulación hacia Arriba
10.
Front Phys ; 92021.
Artículo en Inglés | MEDLINE | ID: mdl-36845872

RESUMEN

Cerenkov luminescence (CL) is a blue-weighted emission of light produced by a vast array of clinically approved radioisotopes and LINAC accelerators. When ß particles (emitted during the decay of radioisotopes) are present in a medium such as water or tissue, they are able to travel faster than the speed of light in that medium and in doing so polarize the molecules around them. Once the particle has left the local area, the polarized molecules relax and return to their baseline state releasing the additional energy as light (luminescence). This blue glow has commonly been used to determine the output of nuclear power plant cores and, in recent years, has found traction in the preclinical and clinical imaging field. This brief review will discuss the technology which has enabled the emergence of the biomedical Cerenkov imaging field, recent pre-clinical studies with potential clinical translation of Cerenkov luminescence imaging (CLI) and the current clinical implementations of the method. Finally, an outlook is given as to the direction in which the field is heading.

11.
Nat Biomed Eng ; 4(3): 286-297, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32165736

RESUMEN

The monitoring of vascular-targeted therapies using magnetic resonance imaging, computed tomography or ultrasound is limited by their insufficient spatial resolution. Here, by taking advantage of the intrinsic optical properties of haemoglobin, we show that raster-scanning optoacoustic mesoscopy (RSOM) provides high-resolution images of the tumour vasculature and of the surrounding tissue, and that the detection of a wide range of ultrasound bandwidths enables the distinction of vessels of differing size, providing detailed insights into the vascular responses to vascular-targeted therapy. Using RSOM to examine the responses to vascular-targeted photodynamic therapy in mice with subcutaneous xenografts, we observed a substantial and immediate occlusion of the tumour vessels followed by haemorrhage within the tissue and the eventual collapse of the entire vasculature. Using dual-wavelength RSOM, which distinguishes oxyhaemoglobin from deoxyhaemoglobin, we observed an increase in oxygenation of the entire tumour volume immediately after the application of the therapy, and a second wave of oxygen reperfusion approximately 24 h thereafter. We also show that RSOM enables the quantification of differences in neoangiogenesis that predict treatment efficacy.


Asunto(s)
Diagnóstico por Imagen/métodos , Neovascularización Patológica/diagnóstico , Técnicas Fotoacústicas/métodos , Ultrasonografía/métodos , Neoplasias Vasculares/diagnóstico por imagen , Animales , Encéfalo/diagnóstico por imagen , Neoplasias del Ventrículo Cerebral/diagnóstico por imagen , Neoplasias del Colon/diagnóstico por imagen , Neoplasias del Colon/patología , Craneotomía , Modelos Animales de Enfermedad , Endotelina-1 , Epinefrina , Femenino , Xenoinjertos , Procesamiento de Imagen Asistido por Computador/métodos , Imagenología Tridimensional , Rayos Láser , Ratones , Ratones Endogámicos BALB C , Oxígeno , Neoplasias de la Vejiga Urinaria/diagnóstico por imagen , Neoplasias de la Vejiga Urinaria/patología , Neoplasias Vasculares/patología , Vasoconstricción
12.
J Clin Invest ; 129(4): 1671-1683, 2019 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-30855281

RESUMEN

Cytomegalovirus (CMV) has been implicated in glioblastoma (GBM); however, a mechanistic connection in vivo has not been established. The purpose of this study is to characterize the effects of murine CMV (MCMV) on GBM growth in murine models. Syngeneic GBM models were established in mice perinatally infected with MCMV. We found that tumor growth was markedly enhanced in MCMV+ mice, with a significant reduction in overall survival compared with that of controls (P < 0.001). We observed increased angiogenesis and tumor blood flow in MCMV+ mice. MCMV reactivation was observed in intratumoral perivascular pericytes and tumor cells in mouse and human GBM specimens, and pericyte coverage of tumor vasculature was strikingly augmented in MCMV+ mice. We identified PDGF-D as a CMV-induced factor essential for pericyte recruitment, angiogenesis, and tumor growth. The antiviral drug cidofovir improved survival in MCMV+ mice, inhibiting MCMV reactivation, PDGF-D expression, pericyte recruitment, and tumor angiogenesis. These data show that MCMV potentiates GBM growth in vivo by increased pericyte recruitment and angiogenesis due to alterations in the secretome of CMV-infected cells. Our model provides evidence for a role of CMV in GBM growth and supports the application of antiviral approaches for GBM therapy.


Asunto(s)
Infecciones por Citomegalovirus , Citomegalovirus/metabolismo , Glioblastoma , Neoplasias Experimentales , Neovascularización Patológica , Pericitos , Animales , Línea Celular Tumoral , Infecciones por Citomegalovirus/metabolismo , Infecciones por Citomegalovirus/patología , Glioblastoma/irrigación sanguínea , Glioblastoma/metabolismo , Glioblastoma/patología , Glioblastoma/virología , Humanos , Linfocinas/metabolismo , Ratones , Células 3T3 NIH , Proteínas de Neoplasias/metabolismo , Neoplasias Experimentales/irrigación sanguínea , Neoplasias Experimentales/metabolismo , Neoplasias Experimentales/patología , Neoplasias Experimentales/virología , Neovascularización Patológica/metabolismo , Neovascularización Patológica/patología , Neovascularización Patológica/virología , Pericitos/metabolismo , Pericitos/patología , Factor de Crecimiento Derivado de Plaquetas/metabolismo
13.
Oncotarget ; 7(27): 41898-41912, 2016 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-27256982

RESUMEN

Cytoplasmic polyadenylation element binding proteins (CPEBs) are auxiliary translational factors that associate with consensus sequences present in 3'UTRs of mRNAs, thereby activating or repressing their translation. Knowing that CPEBs are players in cell cycle regulation and cellular senescence prompted us to investigate their contribution to the molecular pathology of gliomas-most frequent of intracranial tumors found in humans. To this end, we performed methylation analyses in the promoter regions of CPEB1-4 and identified the CPEB1 gene to be hypermethylated in tumor samples. Decreased expression of CPEB1 protein in gliomas correlated with the rising grade of tumor malignancy. Abundant expression of CPEBs2-4 was observed in several glioma specimens. Interestingly, expression of CPEB3 positively correlated with tumor progression and malignancy but negatively correlated with protein phosphorylation in the alternatively spliced region. Our data suggest that loss of CPEB3 activity in high-grade gliomas is caused by expression of alternatively spliced variants lacking the B-region that overlaps with the kinase recognition site. We conclude that deregulation of CPEB proteins may be a frequent phenomenon in gliomas and occurs on the level of transcription involving epigenetic mechanism as well as on the level of mRNA splicing, which generates isoforms with compromised biological properties.


Asunto(s)
Empalme Alternativo , Neoplasias Encefálicas/genética , Glioma/genética , Proteínas de Unión al ARN/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Metilación de ADN , Progresión de la Enfermedad , Femenino , Regulación Neoplásica de la Expresión Génica , Glioma/metabolismo , Glioma/patología , Humanos , Masculino , Clasificación del Tumor , Fosforilación , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Isoformas de ARN/genética , Isoformas de ARN/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo
14.
PLoS One ; 11(2): e0150000, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26915047

RESUMEN

Cytoplasmic Polyadenylation Element Binding proteins (CPEBs) are a family of polyadenylation factors interacting with 3'UTRs of mRNA and thereby regulating gene expression. Various functions of CPEBs in development, synaptic plasticity, and cellular senescence have been reported. Four CPEB family members of partially overlapping functions have been described to date, each containing a distinct alternatively spliced region. This region is highly conserved between CPEBs-2-4 and contains a putative phosphorylation consensus, overlapping with the exon seven of CPEB3. We previously found CPEBs-2-4 splice isoforms containing exon seven to be predominantly present in neurons, and the isoform expression pattern to be cell type-specific. Here, focusing on the alternatively spliced region of CPEB3, we determined that putative neuronal isoforms of CPEB3 are phosphorylated. Using a new phosphospecific antibody directed to the phosphorylation consensus we found Protein Kinase A and Calcium/Calmodulin-dependent Protein Kinase II to robustly phosphorylate CPEB3 in vitro and in primary hippocampal neurons. Interestingly, status epilepticus induced by systemic kainate injection in mice led to specific upregulation of the CPEB3 isoforms containing exon seven. Extensive analysis of CPEB3 phosphorylation in vitro revealed two other phosphorylation sites. In addition, we found plethora of potential kinases that might be targeting the alternatively spliced kinase consensus site of CPEB3. As this site is highly conserved between the CPEB family members, we suggest the existence of a splicing-based regulatory mechanism of CPEB function, and describe a robust phosphospecific antibody to study it in future.


Asunto(s)
Hipocampo/metabolismo , Neuronas/metabolismo , Isoformas de Proteínas/metabolismo , Proteínas de Unión al ARN/metabolismo , Empalme Alternativo , Animales , Anticuerpos Fosfo-Específicos/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Células HEK293 , Humanos , Ratones , Ratones Endogámicos C57BL , Fosforilación
15.
Hippocampus ; 25(5): 630-42, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25483308

RESUMEN

Cytoplasmic polyadenylation element binding (CPEB) proteins are translational regulators that are involved in the control of cellular senescence, synaptic plasticity, learning, and memory. We have previously found all four known CPEB family members to be transcribed in the mouse hippocampus. Aside from a brief description of CPEB2 in mouse brain, not much is known about its biological role. Hence, this study aims to investigate CPEB2 expression in mouse brain. With reverse transcription polymerase chain reaction (RT-PCR) of total mouse brain cDNA, we identified four distinct CPEB2 splice variants. Single-cell RT-PCR showed that CPEB2 is predominantly expressed in neurons of the juvenile and adult brain and that individual cells express different sets of splice variants. Staining of brain slices with a custom-made CPEB2 antibody revealed ubiquitous expression of the protein in many brain regions, including hippocampus, striatum, thalamus, cortex, and cerebellum. We also found differential expression of CPEB2 protein in excitatory, inhibitory, and dopaminergic neurons. In primary hippocampal cultures, the subcellular localization of CPEB2 in neurons and astrocytes resembled that of CPEB1. Electrophoretic mobility shift assay and RNA coimmunoprecipitation revealed CPEB2 interaction with ß-catenin and Ca(2+) /calmodulin-dependent protein kinase II (both established CPEB1 targets), indicating an overlap in RNA binding specificity between CPEB1 and CPEB2. Furthermore, we identified ephrin receptor A4 as a putative novel target of CPEB2. In conclusion, our study identifies CPEB2 splice variants to be differentially expressed among individual cells and across cell types of the mouse hippocampus, and reveals overlapping binding specificity between CPEB2 and CPEB1.


Asunto(s)
Encéfalo/metabolismo , Proteínas de Unión al ARN/metabolismo , ARN/metabolismo , Animales , Astrocitos/metabolismo , Encéfalo/crecimiento & desarrollo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Células HeLa , Humanos , Ratones , Neuronas/metabolismo , Isoformas de Proteínas , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Receptor EphA4/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transfección , beta Catenina/metabolismo , Factores de Escisión y Poliadenilación de ARNm/genética , Factores de Escisión y Poliadenilación de ARNm/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...