Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Aging Cell ; 23(7): e14165, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38757355

RESUMEN

Impaired mitochondrial function is a hallmark of aging and a major contributor to neurodegenerative diseases. We have shown that disrupted mitochondrial dynamics typically found in aging alters the fate of neural stem cells (NSCs) leading to impairments in learning and memory. At present, little is known regarding the mechanisms by which neural stem and progenitor cells survive and adapt to mitochondrial dysfunction. Using Opa1-inducible knockout as a model of aging and neurodegeneration, we identify a decline in neurogenesis due to impaired stem cell activation and progenitor proliferation, which can be rescued by the mitigation of oxidative stress through hypoxia. Through sc-RNA-seq, we identify the ATF4 pathway as a critical mechanism underlying cellular adaptation to metabolic stress. ATF4 knockdown in Opa1-deficient NSCs accelerates cell death, while the increased expression of ATF4 enhances proliferation and survival. Using a Slc7a11 mutant, an ATF4 target, we show that ATF4-mediated glutathione production plays a critical role in maintaining NSC survival and function under stress conditions. Together, we show that the activation of the integrated stress response (ISR) pathway enables NSCs to adapt to metabolic stress due to mitochondrial dysfunction and metabolic stress and may serve as a therapeutic target to enhance NSC survival and function in aging and neurodegeneration.


Asunto(s)
Supervivencia Celular , Mitocondrias , Células-Madre Neurales , Células-Madre Neurales/metabolismo , Mitocondrias/metabolismo , Animales , Ratones , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Enfermedades Neurodegenerativas/genética , Factor de Transcripción Activador 4/metabolismo , Factor de Transcripción Activador 4/genética , Estrés Fisiológico , Estrés Oxidativo
2.
EMBO Rep ; 25(3): 1256-1281, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38429579

RESUMEN

The plant homeodomain zinc-finger protein, PHF6, is a transcriptional regulator, and PHF6 germline mutations cause the X-linked intellectual disability (XLID) Börjeson-Forssman-Lehmann syndrome (BFLS). The mechanisms by which PHF6 regulates transcription and how its mutations cause BFLS remain poorly characterized. Here, we show genome-wide binding of PHF6 in the developing cortex in the vicinity of genes involved in central nervous system development and neurogenesis. Characterization of BFLS mice harbouring PHF6 patient mutations reveals an increase in embryonic neural stem cell (eNSC) self-renewal and a reduction of neural progenitors. We identify a panel of Ephrin receptors (EphRs) as direct transcriptional targets of PHF6. Mechanistically, we show that PHF6 regulation of EphR is impaired in BFLS mice and in conditional Phf6 knock-out mice. Knockdown of EphR-A phenocopies the PHF6 loss-of-function defects in altering eNSCs, and its forced expression rescues defects of BFLS mice-derived eNSCs. Our data indicate that PHF6 directly promotes Ephrin receptor expression to control eNSC behaviour in the developing brain, and that this pathway is impaired in BFLS.


Asunto(s)
Epilepsia , Cara/anomalías , Dedos/anomalías , Trastornos del Crecimiento , Hipogonadismo , Discapacidad Intelectual , Discapacidad Intelectual Ligada al Cromosoma X , Obesidad , Humanos , Ratones , Animales , Discapacidad Intelectual/genética , Proteínas Represoras , Discapacidad Intelectual Ligada al Cromosoma X/genética , Discapacidad Intelectual Ligada al Cromosoma X/metabolismo , Epilepsia/genética , Epilepsia/metabolismo , Factores de Transcripción
3.
BMC Biol ; 21(1): 240, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37907898

RESUMEN

BACKGROUND: PFTK1/Eip63E is a member of the cyclin-dependent kinases (CDKs) family and plays an important role in normal cell cycle progression. Eip63E expresses primarily in postnatal and adult nervous system in Drosophila melanogaster but its role in CNS development remains unknown. We sought to understand the function of Eip63E in the CNS by studying the fly ventral nerve cord during development. RESULTS: Our results demonstrate that Eip63E regulates axogenesis in neurons and its deficiency leads to neuronal defects. Functional interaction studies performed using the same system identify an interaction between Eip63E and the small GTPase Rho1. Furthermore, deficiency of Eip63E homolog in mice, PFTK1, in a newly generated PFTK1 knockout mice results in increased axonal outgrowth confirming that the developmental defects observed in the fly model are due to defects in axogenesis. Importantly, RhoA phosphorylation and activity are affected by PFTK1 in primary neuronal cultures. We report that GDP-bound inactive RhoA is a substrate of PFTK1 and PFTK1 phosphorylation is required for RhoA activity. CONCLUSIONS: In conclusion, our work establishes an unreported neuronal role of PFTK1 in axon development mediated by phosphorylation and activation of GDP-bound RhoA. The results presented add to our understanding of the role of Cdks in the maintenance of RhoA-mediated axon growth and its impact on CNS development and axonal regeneration.


Asunto(s)
Quinasas Ciclina-Dependientes , Drosophila melanogaster , Animales , Ratones , Ciclo Celular , Quinasas Ciclina-Dependientes/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Neuronas/metabolismo , Fosforilación , Proteína de Unión al GTP rhoA/metabolismo
4.
Cell Death Dis ; 14(2): 138, 2023 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-36801910

RESUMEN

Alzheimer's disease (AD) is a progressive neurodegenerative disorder leading to dementia. The hippocampus, which is one of the sites where neural stem cells reside and new neurons are born, exhibits the most significant neuronal loss in AD. A decline in adult neurogenesis has been described in several animal models of AD. However, the age at which this defect first appears remains unknown. To determine at which stage, from birth to adulthood, the neurogenic deficits are found in AD, we used the triple transgenic mouse model of AD (3xTg). We show that defects in neurogenesis are present as early as postnatal stages, well before the onset of any neuropathology or behavioral deficits. We also show that 3xTg mice have significantly fewer neural stem/progenitor cells, with reduced proliferation and decreased numbers of newborn neurons at postnatal stages, consistent with reduced volumes of hippocampal structures. To determine whether there are early changes in the molecular signatures of neural stem/progenitor cells, we perform bulk RNA-seq on cells sorted directly from the hippocampus. We show significant changes in the gene expression profiles at one month of age, including genes of the Notch and Wnt pathways. These findings reveal impairments in neurogenesis very early in the 3xTg AD model, which provides new opportunities for early diagnosis and therapeutic interventions to prevent neurodegeneration in AD.


Asunto(s)
Enfermedad de Alzheimer , Ratones , Animales , Enfermedad de Alzheimer/metabolismo , Neurogénesis/genética , Ratones Transgénicos , Hipocampo/metabolismo , Neuronas/metabolismo , Modelos Animales de Enfermedad
5.
Cell Rep ; 41(5): 111578, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36323247

RESUMEN

Long-term maintenance of the adult neurogenic niche depends on proper regulation of entry and exit from quiescence. Neural stem cell (NSC) transition from quiescence to activation is a complex process requiring precise cell-cycle control coordinated with transcriptional and morphological changes. How NSC fate transitions in coordination with the cell-cycle machinery remains poorly understood. Here we show that the Rb/E2F axis functions by linking the cell-cycle machinery to pivotal regulators of NSC fate. Deletion of Rb family proteins results in activation of NSCs, inducing a transcriptomic transition toward activation. Deletion of their target activator E2Fs1/3 results in intractable quiescence and cessation of neurogenesis. We show that the Rb/E2F axis mediates these fate transitions through regulation of factors essential for NSC function, including REST and ASCL1. Thus, the Rb/E2F axis is an important regulator of NSC fate, coordinating cell-cycle control with NSC activation and quiescence fate transitions.


Asunto(s)
Células Madre Adultas , Células-Madre Neurales , Células-Madre Neurales/metabolismo , Células Madre Adultas/metabolismo , Neurogénesis/fisiología , División Celular , Ciclo Celular , Proteína de Retinoblastoma/genética , Proteína de Retinoblastoma/metabolismo
6.
J Clin Invest ; 132(22)2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36136598

RESUMEN

Preterm birth is the leading cause of death in children under 5 years of age. Premature infants who receive life-saving oxygen therapy often develop bronchopulmonary dysplasia (BPD), a chronic lung disease. Infants with BPD are at a high risk of abnormal neurodevelopment, including motor and cognitive difficulties. While neural progenitor cells (NPCs) are crucial for proper brain development, it is unclear whether they play a role in BPD-associated neurodevelopmental deficits. Here, we show that hyperoxia-induced experimental BPD in newborn mice led to lifelong impairments in cerebrovascular structure and function as well as impairments in NPC self-renewal and neurogenesis. A neurosphere assay utilizing nonhuman primate preterm baboon NPCs confirmed impairment in NPC function. Moreover, gene expression profiling revealed that genes involved in cell proliferation, angiogenesis, vascular autoregulation, neuronal formation, and neurotransmission were dysregulated following neonatal hyperoxia. These impairments were associated with motor and cognitive decline in aging hyperoxia-exposed mice, reminiscent of deficits observed in patients with BPD. Together, our findings establish a relationship between BPD and abnormal neurodevelopmental outcomes and identify molecular and cellular players of neonatal brain injury that persist throughout adulthood that may be targeted for early intervention to aid this vulnerable patient population.


Asunto(s)
Displasia Broncopulmonar , Disfunción Cognitiva , Hiperoxia , Nacimiento Prematuro , Recién Nacido , Femenino , Ratones , Humanos , Animales , Hiperoxia/complicaciones , Hiperoxia/metabolismo , Animales Recién Nacidos , Displasia Broncopulmonar/genética , Neurogénesis , Disfunción Cognitiva/etiología , Cognición , Pulmón/metabolismo
7.
Methods Mol Biol ; 2515: 117-127, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35776349

RESUMEN

Adult neural stem and progenitor cells reside in the neurogenic niche of the adult brain and have tremendous potential in regenerative medicine. Compelling evidence suggests that adult neurogenesis plays an important role in hippocampal memory formation, plasticity, and mood regulation. Understanding the mechanisms that regulate the function of neural stem/progenitor cells within the brain is a critical step for the development of regenerative strategies to maintain or enhance neurological function. A major challenge in studying these cells is the limited cell number of adult neural stem cells, and the significant changes in their properties induced by in vitro culture and expansion. To best understand the regulation of these cells, they must be studied within their niche context. In this chapter, we provide a simplified protocol for the harvest and isolation of neural stem cell lineages directly from the murine brain, to provide input material for single-cell RNA-seq. This approach will elucidate the true transcriptional signatures and activated pathways in neural stem cell lineages, within the context of their niche environment.


Asunto(s)
Células Madre Adultas , Células-Madre Neurales , Células Madre Adultas/metabolismo , Animales , Encéfalo , Hipocampo , Ratones , Neurogénesis/fisiología
8.
BMC Biol ; 20(1): 115, 2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35581583

RESUMEN

BACKGROUND: Activated Cdk5 regulates a number of processes during nervous system formation, including neuronal differentiation, growth cone stabilization, and axonal growth. Cdk5 phosphorylates its downstream substrates located in axonal growth cones, where the highly expressed c-Jun N-terminal kinase (JNK)-interacting protein1 (JIP1) has been implicated as another important regulator of axonal growth. In addition, stringent control of the level of intracellular domain of Notch1 (Notch1-IC) plays a regulatory role in axonal outgrowth during neuronal differentiation. However, whether Cdk5-JIP1-Notch1 cooperate to regulate axonal outgrowth, and the mechanism of such joint contribution to this pathway, is presently unknown, and here we explore their potential interaction. RESULTS: Our interactome screen identified JIP1 as an interactor of p35, a Cdk5 activator, and we sought to explore the relationship between Cdk5 and JIP1 on the regulation of axonal outgrowth. We demonstrate that JIP1 phosphorylated by Cdk5 at Thr205 enhances axonal outgrowth and a phosphomimic JIP1 rescues the axonal outgrowth defects in JIP1-/- and p35-/- neurons. Axonal outgrowth defects caused by the specific increase of Notch1 in JIP1-/- neurons are rescued by Numb-mediated inhibition of Notch1. Finally, we demonstrate that Cdk5 phosphorylation of JIP1 further amplifies the phosphorylation status of yet another Cdk5 substrate E3-ubiquitin ligase Itch, resulting in increased Notch1 ubiquitination. CONCLUSIONS: Our findings identify a potentially critical signaling axis involving Cdk5-JIP1-Itch-Notch1, which plays an important role in the regulation of CNS development. Future investigation into the way this pathway integrates with additional pathways regulating axonal growth will further our knowledge of normal central nervous system development and pathological conditions.


Asunto(s)
Neuronas , Transducción de Señal , Células Cultivadas , Neuronas/metabolismo , Fosforilación , Transducción de Señal/fisiología
9.
Biochim Biophys Acta Mol Cell Res ; 1868(1): 118854, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32926942

RESUMEN

Mitochondria are highly dynamic organelles. Alterations in mitochondrial dynamics are causal or are linked to numerous neurodegenerative, neuromuscular, and metabolic diseases. It is generally thought that cells with altered mitochondrial structure are prone to mitochondrial dysfunction, increased reactive oxygen species generation and widespread oxidative damage. The objective of the current study was to investigate the relationship between mitochondrial dynamics and the master cellular antioxidant, glutathione (GSH). We reveal that mouse embryonic fibroblasts (MEFs) lacking the mitochondrial fusion machinery display elevated levels of GSH, which limits oxidative damage. Moreover, targeted metabolomics and 13C isotopic labeling experiments demonstrate that cells lacking the inner membrane fusion GTPase OPA1 undergo widespread metabolic remodeling altering the balance of citric acid cycle intermediates and ultimately favoring GSH synthesis. Interestingly, the GSH precursor and antioxidant n-acetylcysteine did not increase GSH levels in OPA1 KO cells, suggesting that cysteine is not limiting for GSH production in this context. Post-mitotic neurons were unable to increase GSH production in the absence of OPA1. Finally, the ability to use glycolysis for ATP production was a requirement for GSH accumulation following OPA1 deletion. Thus, our results demonstrate a novel role for mitochondrial fusion in the regulation of GSH synthesis, and suggest that cysteine availability is not limiting for GSH synthesis in conditions of mitochondrial fragmentation. These findings provide a possible explanation for the heightened sensitivity of certain cell types to alterations in mitochondrial dynamics.


Asunto(s)
Antioxidantes/metabolismo , Glutatión/genética , Mitocondrias/genética , Dinámicas Mitocondriales/genética , Adenosina Trifosfato/metabolismo , Animales , Apoptosis/genética , GTP Fosfohidrolasas/genética , Glutatión/biosíntesis , Glucólisis/genética , Humanos , Fusión de Membrana/genética , Ratones , Mitocondrias/metabolismo , Estrés Oxidativo/genética , Especies Reactivas de Oxígeno/metabolismo
10.
Cell Death Dis ; 11(5): 321, 2020 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-32371858

RESUMEN

Mitochondria play a crucial role in neuronal survival through efficient energy metabolism. In pathological conditions, mitochondrial stress leads to neuronal death, which is regulated by the anti-apoptotic BCL-2 family of proteins. MCL-1 is an anti-apoptotic BCL-2 protein localized to mitochondria either in the outer membrane (OM) or inner membrane (Matrix), which have distinct roles in inhibiting apoptosis and promoting bioenergetics, respectively. While the anti-apoptotic role for Mcl1 is well characterized, the protective function of MCL-1 Matrix remains poorly understood. Here, we show MCL-1OM and MCL-1Matrix prevent neuronal death through distinct mechanisms. We report that MCL-1Matrix functions to preserve mitochondrial energy transduction and improves respiratory chain capacity by modulating mitochondrial oxygen consumption in response to mitochondrial stress. We show that MCL-1Matrix protects neurons from stress by enhancing respiratory function, and by inhibiting mitochondrial permeability transition pore opening. Taken together, our results provide novel insight into how MCL-1Matrix may confer neuroprotection under stress conditions involving loss of mitochondrial function.


Asunto(s)
Supervivencia Celular/genética , Mitocondrias/metabolismo , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Neuronas/metabolismo , Animales , Apoptosis/fisiología , Proteínas Reguladoras de la Apoptosis/metabolismo , Muerte Celular/genética , Humanos , Ratones , Mitocondrias/genética , Membranas Mitocondriales/metabolismo , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA