Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Earth Space Chem ; 8(8): 1609-1622, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39166261

RESUMEN

Variable wind speeds over the ocean can have a significant impact on the formation mechanism and physical-chemical properties of sea spray aerosols (SSA), which in turn influence their climate-relevant impacts. Herein, for the first time, we investigate the effects of wind speed on size-dependent morphology and composition of individual nascent SSA generated from wind-wave interactions of natural seawater within a wind-wave channel as a function of size and their particle-to-particle variability. Filter-based thermal optical analysis, atomic force microscopy (AFM), AFM infrared spectroscopy (AFM-IR), and scanning electron microscopy (SEM) were employed in this regard. This study focuses on SSA with sizes within 0.04-1.8 µm generated at two wind speeds: 10 m/s, representing a wind lull scenario over the ocean, and 19 m/s, indicative of the wind speeds encountered in stormy conditions. Filter-based measurements revealed a reduction of the organic mass fraction as the wind speed increases. AFM imaging at 20% relative humidity of individual SSA identified six main morphologies: prism-like, rounded, core-shell, rod, rod inclusion core-shell, and aggregates. At 10 m/s, most SSA were rounded, while at 19 m/s, core-shells became predominant. Based on AFM-IR, rounded SSA at both wind speeds had similar composition, mainly composed of aliphatic and oxygenated species, whereas the shells of core-shells displayed more oxygenated organics at 19 m/s and more aliphatic organics at 10 m/s. Collectively, our observations can be attributed to the disruption of the sea surface microlayer film structure at higher wind speeds. The findings reveal a significant impact of wind speed on morphology and composition of SSA, which should be accounted for accurate assessment of their climate effects.

2.
Anal Chem ; 96(31): 12901-12907, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39047064

RESUMEN

Online mass spectrometry techniques, such as extractive electrospray ionization mass spectrometry (EESI-MS), present an attractive alternative for analyzing aerosol molecular composition due to reduced aerosol sample collection and handling times and improved time resolution. Recent studies show a dependence of EESI-MS sensitivity on particle size and mixing state. This study measured authentic sea spray aerosol (SSA) components generated during a phytoplankton bloom, specifically glycerol, palmitic acid, and potassium ions. We demonstrate temporal variability and trends dependent on specific biological processes occurring in seawater. We found that the EESI-MS sensitivity, after adjusting for pressure variations at the inlet and normalizing to the reagent ion, critically depends on the sample's relative humidity. Relevant SSA species exhibited heightened sensitivity at an elevated relative humidity near the deliquescence relative humidity of sea salt and poorer sensitivity with sparse detection below the efflorescence relative humidity. Modeling the reagent ion's diffusive depth demonstrates that the sample aerosol particle viscosity governs the relative humidity dependence because it modulates the particle's coagulation efficiency and distance the reagent ion diffuses and reacts with components in the particle bulk. The effects of particle size and mixing state are discussed, revealing improved sensitivity of phase-separated components present along the particle surface. This work highlights the importance of the particle phase state in detecting and quantifying molecular components within authentic and complex aerosol particles and the utility of EESI-MS for measuring SSA composition.

4.
J Phys Chem A ; 127(21): 4724-4733, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37200050

RESUMEN

Plastics have become ubiquitous in the world's oceans, and recent work indicates that they can transfer from the ocean to the atmosphere in sea spray aerosol (SSA). Hazardous chemical residues in plastics, including bisphenol-A (BPA), represent a sizable fraction of consumer plastics and have been measured consistently in air over both terrestrial and marine environments. However, the chemical lifetimes of BPA and mechanisms by which plastic residues degrade with respect to photochemical and heterogeneous oxidation processes in aerosols are unknown. Here, we present the photosensitized and OH-initiated heterogeneous oxidation kinetics of BPA in the aerosol phase consisting of pure-component BPA and internal mixtures of BPA, NaCl, and dissolved photosensitizing organic matter. We found that photosensitizers enhanced BPA degradation in binary-component BPA + photosensitizer aerosol mixtures when irradiated in the absence of OH. OH-initiated degradation of BPA was enhanced in the presence of NaCl with and without photosensitizing species. We attribute this enhanced degradation to greater mobility and thus reaction probability between BPA, OH, and reactive chlorine species (RCS) formed through reaction between OH and dissolved Cl- in the more liquid-like aerosol matrix in the presence of NaCl. Addition of the photosensitizers in the ternary-component BPA + NaCl + photosensitizer aerosol led to no enhancement in the degradation of BPA following light exposure compared to the binary-component BPA + NaCl aerosol. This was attributed to quenching of triplet state formation by dissolved Cl- in the less viscous aqueous aerosol mixtures containing NaCl. Based upon measured second-order heterogeneous reaction rates, the estimated lifetime of BPA with respect to heterogeneous oxidation by OH is one week in the presence of NaCl compared to 20 days in the absence of NaCl. This work highlights the important heterogeneous and photosensitized reactions and the role of phase state, which affect the lifetimes of hazardous plastic pollutants in SSA with implications for understanding pollutant transport and exposure risks in coastal marine environments.

5.
Front Psychol ; 14: 1184054, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37255523

RESUMEN

We describe ongoing efforts to better understand the interaction of spoken languages and their physical environments. We begin by briefly surveying research suggesting that languages evolve in ways that are influenced by the physical characteristics of their environments, however the primary focus is on the converse issue: how speech affects the physical environment. We discuss the speech-based production of airflow and aerosol particles that are buoyant in ambient air, based on some of the results in the literature. Most critically, we demonstrate a novel method used to capture aerosol, airflow, and acoustic data simultaneously. This method captures airflow data via a pneumotachograph and aerosol data via an electrical particle impactor. The data are collected underneath a laminar flow hood while participants breathe pure air, thereby eliminating background aerosol particles and isolating those produced during speech. Given the capabilities of the electrical particle impactor, which has not previously been used to analyze speech-based aerosols, the method allows for the detection of aerosol particles at temporal and physical resolutions exceeding those evident in the literature, even enabling the isolation of the role of individual sound types in the production of aerosols. The aerosols detected via this method range in size from 70 nanometers to 10 micrometers in diameter. Such aerosol particles are capable of hosting airborne pathogens. We discuss how this approach could ultimately yield data that are relevant to airborne disease transmission and offer preliminary results that illustrate such relevance. The method described can help uncover the actual articulatory gestures that generate aerosol emissions, as exemplified here through a discussion focused on plosive aspiration and vocal cord vibration. The results we describe illustrate in new ways the unseen and unheard ways in which spoken languages interact with their physical environments.

6.
Environ Sci Process Impacts ; 24(2): 290-315, 2022 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-35048927

RESUMEN

Marine aerosols strongly influence climate through their interactions with solar radiation and clouds. However, significant questions remain regarding the influences of biological activity and seawater chemistry on the flux, chemical composition, and climate-relevant properties of marine aerosols and gases. Wave channels, a traditional tool of physical oceanography, have been adapted for large-scale ocean-atmosphere mesocosm experiments in the laboratory. These experiments enable the study of aerosols under controlled conditions which isolate the marine system from atmospheric anthropogenic and terrestrial influences. Here, we present an overview of the 2019 Sea Spray Chemistry and Particle Evolution (SeaSCAPE) study, which was conducted in an 11 800 L wave channel which was modified to facilitate atmospheric measurements. The SeaSCAPE campaign sought to determine the influence of biological activity in seawater on the production of primary sea spray aerosols, volatile organic compounds (VOCs), and secondary marine aerosols. Notably, the SeaSCAPE experiment also focused on understanding how photooxidative aging processes transform the composition of marine aerosols. In addition to a broad range of aerosol, gas, and seawater measurements, we present key results which highlight the experimental capabilities during the campaign, including the phytoplankton bloom dynamics, VOC production, and the effects of photochemical aging on aerosol production, morphology, and chemical composition. Additionally, we discuss the modifications made to the wave channel to improve aerosol production and reduce background contamination, as well as subsequent characterization experiments. The SeaSCAPE experiment provides unique insight into the connections between marine biology, atmospheric chemistry, and climate-relevant aerosol properties, and demonstrates how an ocean-atmosphere-interaction facility can be used to isolate and study reactions in the marine atmosphere in the laboratory under more controlled conditions.


Asunto(s)
Atmósfera , Agua de Mar , Aerosoles/química , Atmósfera/química , Océanos y Mares , Fitoplancton , Agua de Mar/química
7.
Environ Sci Technol ; 53(9): 4977-4987, 2019 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-31002496

RESUMEN

Aerosol phase state is critical for quantifying aerosol effects on climate and air quality. However, significant challenges remain in our ability to predict and quantify phase state during its evolution in the atmosphere. Herein, we demonstrate that aerosol phase (liquid, semisolid, solid) exhibits a diel cycle in a mixed forest environment, oscillating between a viscous, semisolid phase state at night and liquid phase state with phase separation during the day. The viscous nighttime particles existed despite higher relative humidity and were independently confirmed by bounce factor measurements and atomic force microscopy. High-resolution mass spectrometry shows the more viscous phase state at night is impacted by the formation of terpene-derived and higher molecular weight secondary organic aerosol (SOA) and smaller inorganic sulfate mass fractions. Larger daytime particulate sulfate mass fractions, as well as a predominance of lower molecular weight isoprene-derived SOA, lead to the liquid state of the daytime particles and phase separation after greater uptake of liquid water, despite the lower daytime relative humidity. The observed diel cycle of aerosol phase should provoke rethinking of the SOA atmospheric lifecycle, as it suggests diurnal variability in gas-particle partitioning and mixing time scales, which influence aerosol multiphase chemistry, lifetime, and climate impacts.


Asunto(s)
Atmósfera , Sulfatos , Aerosoles , Química Orgánica , Bosques
8.
J Phys Chem A ; 119(19): 4533-44, 2015 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-25686209

RESUMEN

Multiphase reactions of OH radicals are among the most important pathways of chemical aging of organic aerosols in the atmosphere. Reactive uptake of OH by organic compounds has been observed in a number of studies, but the kinetics of mass transport and chemical reaction are still not fully understood. Here we apply the kinetic multilayer model of gas-particle interactions (KM-GAP) to experimental data from OH exposure studies of levoglucosan and abietic acid, which serve as surrogates and molecular markers of biomass burning aerosol (BBA). The model accounts for gas-phase diffusion within a cylindrical coated-wall flow tube, reversible adsorption of OH, surface-bulk exchange, bulk diffusion, and chemical reactions at the surface and in the bulk of the condensed phase. The nonlinear dependence of OH uptake coefficients on reactant concentrations and time can be reproduced by KM-GAP. We find that the bulk diffusion coefficient of the organic molecules is approximately 10(-16) cm(2) s(-1), reflecting an amorphous semisolid state of the organic substrates. The OH uptake is governed by reaction at or near the surface and can be kinetically limited by surface-bulk exchange or bulk diffusion of the organic reactants. Estimates of the chemical half-life of levoglucosan in 200 nm particles in a biomass burning plume increase from 1 day at high relative humidity to 1 week under dry conditions. In BBA particles transported to the free troposphere, the chemical half-life of levoglucosan can exceed 1 month due to slow bulk diffusion in a glassy matrix at low temperature.


Asunto(s)
Aerosoles/química , Biomasa , Radical Hidroxilo/química , Abietanos/química , Adsorción , Proteínas de Arabidopsis/química , Atmósfera/análisis , Simulación por Computador , Difusión , Glucosa/análogos & derivados , Glucosa/química , Humedad , Cinética , Modelos Químicos , Dinámicas no Lineales , Proteínas Quinasas/química , Temperatura
9.
Phys Chem Chem Phys ; 15(16): 5898-915, 2013 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-23487256

RESUMEN

The reactive uptake coefficients (γ) of OH by levoglucosan, abietic acid, and nitroguaiacol serving as surrogate compounds for biomass burning aerosol have been determined employing a chemical ionisation mass spectrometer coupled to a rotating-wall flow-tube reactor over a wide range of [OH] ∼10(7)-10(11) molecule cm(-3). Volatilisation products of these organic substrates due to heterogeneous oxidation by OH have been determined at 1 atm using a high resolution proton transfer reaction time-of-flight mass spectrometer (HR-PTR-ToF-MS). γ range within 0.05-1 for [OH] = 2.6 × 10(7)-3 × 10(9) molecule cm(-3) for all investigated organic compounds, but decrease to 0.008-0.034 for [OH] = 4.1 × 10(10)-6.7 × 10(10) molecule cm(-3). γ as a function of [OH] can be described by a Langmuir-Hinshelwood model, neglecting bulk processes, suggesting that despite its strong reactivity, OH is mobile on surfaces prior to reaction. The best fit Langmuir-Hinshelwood parameters on average are K(OH) = 3.81 × 10(-10) cm(3) molecule(-1) and k(s) = 9.71 × 10(-17) cm(2) molecule(-1) s(-1) for all of the investigated organic compounds. Volatilised products have been identified indicating enhancements over background of 50% up to a factor of 15. Amongst the common volatile organic compounds (VOCs) identified between levoglucosan, abietic acid, and nitroguaiacol were methanol, acetaldehyde, formic acid, and acetic acid. VOCs having the greatest enhancement over background were glucic acid from levoglucosan, glycolic acid from abietic acid, and methanol and nitric acid from nitroguaiacol. Reaction mechanisms leading to the formation of glucic acid, glycolic acid, methanol, and nitric acid are proposed. Estimated lower limits of atmospheric lifetimes of biomass burning aerosol particles, 200 nm in diameter, by heterogeneous OH oxidation under fresh biomass burning plume conditions are ∼2 days and up to ∼2 weeks for atmospheric background conditions. However, estimated lifetimes depend crucially on [OH] and corresponding γ, emphasising the need to determine γ under relevant conditions.


Asunto(s)
Aerosoles/química , Hidróxidos/química , Abietanos/química , Biomasa , Gases/química , Glucosa/análogos & derivados , Glucosa/química , Guayacol/química , Cinética , Oxidación-Reducción , Compuestos Orgánicos Volátiles/química , Volatilización
10.
Phys Chem Chem Phys ; 13(47): 21050-62, 2011 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-22020363

RESUMEN

The reactive uptake coefficients (γ) of O(3), NO(2), N(2)O(5), and NO(3) by levoglucosan, abietic acid, nitroguaiacol, and an atmospherically relevant mixture of those species serving as surrogates for biomass burning aerosol have been determined employing a chemical ionization mass spectrometer coupled to a rotating-wall flow-tube reactor. γ of O(3), NO(2), N(2)O(5), and NO(3) in the presence of O(2) are in the range of 1-8 × 10(-5), <10(-6)-5 × 10(-5), 4-6 × 10(-5), and 1-26 × 10(-3), respectively, for the investigated organic substrates. Within experimental uncertainties the uptake of NO(3) was not sensitive to the presence of water vapour ( <0.5% relative humidity). [corrected]. NO(3) uptake experiments involving substrates of levoglucosan, abietic acid, and the mixture exhibit an initial strong uptake of NO(3) followed by NO(3) gas-phase recovery as a function of NO(3) exposure. In contrast, the uptake of NO(3) by nitroguaiacol continuously proceeds at the same efficiency for investigated NO(3) exposures. The derived oxidative power, i.e. the product of γ and atmospheric oxidant concentration, for applied oxidants is similar or significantly larger in magnitude than for OH, emphasizing the potential importance of these oxidants for particle oxidation. Estimated atmospheric lifetimes for the topmost organic layer with respect to O(3), NO(2), N(2)O(5), and NO(3) oxidation for typical polluted conditions range between 1-112 min, indicating the potential for significant chemical transformation during atmospheric transport. The contact angles determined prior to, and after heterogeneous oxidation by NO(3), representative of 50 ppt for 1 day, do not decrease and thus do not indicate a significant increase in hygroscopicity with potential impacts on water uptake and cloud formation processes.


Asunto(s)
Aerosoles/química , Nitratos/química , Nitritos/química , Óxidos de Nitrógeno/química , Ozono/química , Biomasa , Cinética , Oxidación-Reducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA