Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Rev Sci Instrum ; 83(11): 115110, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23206101

RESUMEN

Ferrule-top probes are self-aligned all-optical devices obtained by fabricating a cantilever on the top of a ferruled optical fiber. This approach has been proven to provide a new platform for the realization of small footprint atomic force microscopes (AFMs) that adapt well to utilization outside specialized laboratories [D. Chavan et al., Rev. Sci. Instrum. 81, 123702 (2010); ibid. 82, 046107 (2011)]. In this paper we now show that ferrule-top cantilevers can be also used to develop nanoindenters. Our instrument combines the sensitivity of commercial AFM-based indentation with the ease-of-use of more macroscopic instrumented indenters available today on the market. Furthermore, the all-optical design allows smooth operations also in liquids, where other devices are much more limited and often provide data that are difficult to interpret. This study may pave the way to the implementation of a new generation user-friendly nanoindenters for the measurement of the stiffness of samples in material sciences and medical research.

2.
Opt Express ; 19 Suppl 6: A1175-83, 2011 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-22109612

RESUMEN

A new design of a fiber optic Surface Plasmon Resonance (SPR) sensor using Palladium as a sensitive layer for hydrogen detection is presented. In this approach, a transducer layer is deposited on the outside of a multimode fiber, after removing the optical cladding. The transducer layer is a multilayer stack made of a Silver, a Silica and a Palladium layer. The spectral modulation of the light transmitted by the fiber allows to detect the presence of hydrogen in the environment. The sensor is only sensitive to the Transverse Magnetic polarized light and the Traverse Electric polarized light can be used therefore as a reference signal. A more reliable response is expected for the fiber SPR hydrogen sensor based on spectral modulation instead of on intensity modulation. The multilayer thickness defines the sensor performance. The silica thickness tunes the resonant wavelength, whereas the Silver and Palladium thickness determine the sensor sensitivity. In an optimal configuration (NA = 0.22, 100 µm core radius and transducer length = 1 cm), the resonant wavelength is shifted over 17.6 nm at a concentration of 4% Hydrogen in Argon for the case of the 35 nm Silver/ 100 nm Silica/ 3 nm palladium multilayer.

3.
Rev Sci Instrum ; 81(12): 123702, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21198027

RESUMEN

Ferrule-top cantilevers are a new generation of all-optical miniaturized devices for utilization in liquids, harsh environments, and small volumes [G. Gruca et al., Meas. Sci. Technol. 21, 094033 (2010)]. They are obtained by carving the end of a ferruled fiber in the form of a mechanical beam. Light coupled from the opposite side of the fiber allows detection of cantilever deflections. In this paper, we demonstrate that ferrule-top cantilevers can be used to develop ultra compact AFMs for contact mode imaging in air and in liquids with sensitivity comparable to that of commercial AFMs. The probes do not require any alignment procedure and are easy to handle, favoring applications also outside research laboratories.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...