Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(29): e2122237119, 2022 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-35858324

RESUMEN

We use the continuum micromagnetic framework to derive the formulas for compact skyrmion lifetime due to thermal noise in ultrathin ferromagnetic films with relatively weak interfacial Dzyaloshinskii-Moriya interaction. In the absence of a saddle point connecting the skyrmion solution to the ferromagnetic state, we interpret the skyrmion collapse event as "capture by an absorber" at microscale. This yields an explicit Arrhenius collapse rate with both the barrier height and the prefactor as functions of all the material parameters, as well as the dynamical paths to collapse.

2.
Philos Trans A Math Phys Eng Sci ; 379(2201): 20200108, 2021 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-34024134

RESUMEN

We present a perspective on several current research directions relevant to the mathematical design of new materials. We discuss: (i) design problems for phase-transforming and shape-morphing materials, (ii) epitaxy as an approach of central importance in the design of advanced semiconductor materials, (iii) selected design problems in soft matter, (iv) mathematical problems in magnetic materials, (v) some open problems in liquid crystals and soft materials and (vi) mathematical problems on liquid crystal colloids. The presentation combines topics from soft and hard condensed matter, with specific focus on those design themes where mathematical approaches could possibly lead to exciting progress. This article is part of the theme issue 'Topics in mathematical design of complex materials'.

3.
Phys Rev Lett ; 119(7): 077203, 2017 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-28949682

RESUMEN

We investigate the effect of large curvature and dipolar energy in thin ferromagnetic films with periodically modulated top and bottom surfaces on magnetization behavior. We predict that the dipolar interaction and surface curvature can produce perpendicular anisotropy which can be controlled by engineering special types of periodic surface structures. Similar effects can be achieved by a significant surface roughness in the film. We demonstrate that, in general, the anisotropy can point in an arbitrary direction depending on the surface curvature. Furthermore, we provide simple examples of these periodic surface structures to show how to engineer particular anisotropies in thin films.

4.
Proc Math Phys Eng Sci ; 473(2197): 20160666, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28265192

RESUMEN

Recent advances in nanofabrication make it possible to produce multilayer nanostructures composed of ultrathin film materials with thickness down to a few monolayers of atoms and lateral extent of several tens of nanometers. At these scales, ferromagnetic materials begin to exhibit unusual properties, such as perpendicular magnetocrystalline anisotropy and antisymmetric exchange, also referred to as Dzyaloshinskii-Moriya interaction (DMI), because of the increased importance of interfacial effects. The presence of surface DMI has been demonstrated to fundamentally alter the structure of domain walls. Here we use the micromagnetic modelling framework to analyse the existence and structure of chiral domain walls, viewed as minimizers of a suitable micromagnetic energy functional. We explicitly construct the minimizers in the one-dimensional setting, both for the interior and edge walls, for a broad range of parameters. We then use the methods of Γ-convergence to analyse the asymptotics of the two-dimensional magnetization patterns in samples of large spatial extent in the presence of weak applied magnetic fields.

5.
Proc Math Phys Eng Sci ; 469(2160): 20130308, 2013 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-24353468

RESUMEN

We develop a systematic asymptotic description for domain wall motion in one-dimensional magnetic nanowires under the influence of small applied magnetic fields and currents and small material anisotropy. The magnetization dynamics, as governed by the Landau-Lifshitz-Gilbert equation, is investigated via a perturbation expansion. We compute leading-order behaviour, propagation velocities and first-order corrections of both travelling waves and oscillatory solutions, and find bifurcations between these two types of solutions. This treatment provides a sound mathematical foundation for numerous results in the literature obtained through more ad hoc arguments.

6.
Phys Rev Lett ; 104(14): 147202, 2010 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-20481956

RESUMEN

We address the dynamics of magnetic domain walls in ferromagnetic nanowires under the influence of external time-dependent magnetic fields. We report a new exact spatiotemporal solution of the Landau-Lifshitz-Gilbert equation for the case of soft ferromagnetic wires and nanostructures with uniaxial anisotropy. The solution holds for applied fields with arbitrary strength and time dependence. We further extend this solution to applied fields slowly varying in space and to multiple domain walls.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA