Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chem Commun (Camb) ; 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38775039

RESUMEN

Organic cages can possess complex, functionalised cavities that make them promising candidates for synthetic enzyme mimics. Conformationally flexible, chemically robust structures are needed for adaptable guest binding and catalysis, but rapidly exchanging systems are difficult to resolve in solution. Here, we use low-cost calculations and high-throughput crystallisation to identify accessible conformers of a recently reported organic cage by 'locking' them in the solid state. The conformers exhibit varying distances between the internal carboxylic acid groups, suggesting adaptability for binding a wide array of target guest molecules.

2.
Lab Chip ; 23(12): 2720-2728, 2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37218214

RESUMEN

Non-thermal plasma (NTP) is a promising state of matter for carrying out chemical reactions. NTP offers high densities of reactive species, without the need for a catalyst, while operating at atmospheric pressure and remaining at moderate temperature. Despite its potential, NTP cannot be used comprehensively in reactions until the complex interactions of NTP and liquids are better understood. To achieve this, NTP reactors that can overcome challenges with solvent evaporation, enable inline data collection, and achieve high selectivity, high yield, and high throughput are required. Here, we detail the construction of i) a microfluidic reactor for chemical reactions using NTP in organic solvents and ii) a corresponding batch setup for control studies and scale-up. The use of microfluidics enables controlled generation of NTP and subsequent mixing with reaction media without loss of solvent. The construction of a low-cost custom mount enables inline optical emission spectroscopy using a fibre optic probe at points along the fluidic pathway, which is used to probe species arising from NTP interacting with solvents. We demonstrate the decomposition of methylene blue in both reactors, developing an underpinning framework for applications in NTP chemical synthesis.

3.
Nat Chem ; 9(1): 17-25, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27995921

RESUMEN

Synthetic control over pore size and pore connectivity is the crowning achievement for porous metal-organic frameworks (MOFs). The same level of control has not been achieved for molecular crystals, which are not defined by strong, directional intermolecular coordination bonds. Hence, molecular crystallization is inherently less controllable than framework crystallization, and there are fewer examples of 'reticular synthesis', in which multiple building blocks can be assembled according to a common assembly motif. Here we apply a chiral recognition strategy to a new family of tubular covalent cages to create both 1D porous nanotubes and 3D diamondoid pillared porous networks. The diamondoid networks are analogous to MOFs prepared from tetrahedral metal nodes and linear ditopic organic linkers. The crystal structures can be rationalized by computational lattice-energy searches, which provide an in silico screening method to evaluate candidate molecular building blocks. These results are a blueprint for applying the 'node and strut' principles of reticular synthesis to molecular crystals.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...