Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Chem Phys ; 144(16): 161105, 2016 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-27131523

RESUMEN

We apply a three-fold covariance imaging method to analyse previously acquired data [C. S. Slater et al., Phys. Rev. A 89, 011401(R) (2014)] on the femtosecond laser-induced Coulomb explosion of spatially pre-aligned 3,5-dibromo-3',5'-difluoro-4'-cyanobiphenyl molecules. The data were acquired using the "Pixel Imaging Mass Spectrometry" camera. We show how three-fold covariance imaging of ionic photofragment recoil trajectories can be used to provide new information about the parent ion's molecular structure prior to its Coulomb explosion. In particular, we show how the analysis may be used to obtain information about molecular conformation and provide an alternative route for enantiomer determination.

2.
Phys Rev Lett ; 113(7): 073005, 2014 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-25170706

RESUMEN

The torsional motion of a molecule composed of two substituted benzene rings, linked by a single bond, is coherently controlled by a pair of strong (3×10^{13} W cm^{-2}), nonresonant (800 nm) 200-fs-long laser pulses-both linearly polarized perpendicular to the single-bond axis. If the second pulse is sent at the time when the two benzene rings rotate toward (away from) each other the amplitude of the torsion is strongly enhanced (reduced). The torsional motion persists for more than 150 ps corresponding to approximately 120 torsional oscillations. Our calculations show that the key to control is the strong transient modification of the natural torsional potential by the laser-induced dynamic Stark effect.

3.
Phys Chem Chem Phys ; 16(2): 383-95, 2014 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-24002354

RESUMEN

The development of sensors capable of detecting particles and radiation with both high time and high positional resolution is key to improving our understanding in many areas of science. Example applications of such sensors range from fundamental scattering studies of chemical reaction mechanisms through to imaging mass spectrometry of surfaces, neutron scattering studies aimed at probing the structure of materials, and time-resolved fluorescence measurements to elucidate the structure and function of biomolecules. In addition to improved throughput resulting from parallelisation of data collection - imaging of multiple different fragments in velocity-map imaging studies, for example - fast image sensors also offer a number of fundamentally new capabilities in areas such as coincidence detection. In this Perspective, we review recent developments in fast image sensor technology, provide examples of their implementation in a range of different experimental contexts, and discuss potential future developments and applications.

4.
J Phys Chem A ; 116(45): 10897-903, 2012 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-23102270

RESUMEN

We present the first multimass velocity-map imaging data acquired using a new ultrafast camera designed for time-resolved particle imaging. The PImMS (Pixel Imaging Mass Spectrometry) sensor allows particle events to be imaged with time resolution as high as 25 ns over data acquisition times of more than 100 µs. In photofragment imaging studies, this allows velocity-map images to be acquired for multiple fragment masses on each time-of-flight cycle. We describe the sensor architecture and present bench-testing data and multimass velocity-map images for photofragments formed in the UV photolysis of two test molecules: Br(2) and N,N-dimethylformamide.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...