Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
ACS Med Chem Lett ; 11(8): 1573-1580, 2020 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-32832026

RESUMEN

Small molecule ligand binding to the ATAD2 bromodomain is investigated here through the synergistic combination of molecular dynamics and protein crystallography. A previously unexplored conformation of the binding pocket upon rearrangement of the gatekeeper residue Ile1074 has been found. Further, our investigations reveal how minor structural differences in the ligands result in binding with different plasticity of the ZA loop for this difficult-to-drug bromodomain.

2.
ChemMedChem ; 15(9): 744-748, 2020 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-32159918

RESUMEN

The RNA methylase METTL3 catalyzes the transfer of a methyl group from the cofactor S-adenosyl-L-methionine (SAM) to the N6 atom of adenine. We have screened a library of 4000 analogues and derivatives of the adenosine moiety of SAM by high-throughput docking into METTL3. Two series of adenine derivatives were identified in silico, and the binding mode of six of the predicted inhibitors was validated by protein crystallography. Two compounds, one for each series, show good ligand efficiency. We propose a route for their further development into potent and selective inhibitors of METTL3.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Metiltransferasas/antagonistas & inhibidores , Cristalografía por Rayos X , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Humanos , Metiltransferasas/metabolismo , Modelos Moleculares , Conformación Molecular , Estereoisomerismo
3.
ACS Chem Biol ; 15(3): 618-625, 2020 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-32101404

RESUMEN

We report a crystallographic analysis of small-molecule ligands of the human YTHDC1 domain that recognizes N6-methylated adenine (m6A) in RNA. The 30 binders are fragments (molecular weight < 300 g mol-1) that represent 10 different chemotypes identified by virtual screening. Despite the structural disorder of the binding site loop (residues 429-439), most of the 30 fragments emulate the two main interactions of the -NHCH3 group of m6A. These interactions are the hydrogen bond to the backbone carbonyl of Ser378 and the van der Waals contacts with the tryptophan cage. Different chemical groups are involved in the conserved binding motifs. Some of the fragments show favorable ligand efficiency for YTHDC1 and selectivity against other m6A reader domains. The structural information is useful for the design of modulators of m6A recognition by YTHDC1.


Asunto(s)
Proteínas del Tejido Nervioso/química , Fragmentos de Péptidos/química , Factores de Empalme de ARN/química , ARN/química , Aminas/química , Secuencia de Aminoácidos , Sitios de Unión , Cristalización , Enlace de Hidrógeno , Ligandos , Modelos Moleculares , Unión Proteica , Dominios Proteicos , Relación Estructura-Actividad
4.
RSC Med Chem ; 11(6): 665-675, 2020 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-33479666

RESUMEN

The X-ray structure of the catalytic domain of the EphA3 tyrosine kinase in complex with a previously reported type II inhibitor was used to design two novel quinoxaline derivatives, inspired by kinase inhibitors that have reached clinical development. These two new compounds were characterized by an array of cell-based assays and gene expression profiling experiments. A global chemical proteomics approach was used to generate the drug-protein interaction profile, which suggested suitable therapeutic indications. Both inhibitors, studied in the context of angiogenesis and in vivo in a relevant lymphoma model, showed high efficacy in the control of tumor size.

5.
J Chem Theory Comput ; 15(12): 7004-7014, 2019 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-31670957

RESUMEN

N6-Methyladenosine (m6A) is the most prevalent chemical modification in human mRNAs. Its recognition by reader proteins enables many cellular functions, including splicing and translation of mRNAs. However, the binding mechanisms of m6A-containing RNAs to their readers are still elusive due to the unclear roles of m6A-flanking ribonucleotides. Here, we use a model system, YTHDC1 with its RNA motif 5'-G-2G-1(m6A)C+1U+2-3', to investigate the binding mechanisms by atomistic simulations, X-ray crystallography, and isothermal titration calorimetry. The experimental data and simulation results show that m6A is captured by an aromatic cage of YTHDC1 and the 3' terminus nucleotides are stabilized by cation-π-π interactions, while the 5' terminus remains flexible. Notably, simulations of unbound RNA motifs reveal that the methyl group of m6A and the 5' terminus shift the conformational preferences of the oligoribonucleotide to the bound-like conformation, thereby facilitating the association process. The binding mechanisms may help in the discovery of chemical probes against m6A reader proteins.


Asunto(s)
Proteínas del Tejido Nervioso/química , Motivos de Nucleótidos , Factores de Empalme de ARN/química , ARN Mensajero/química , Sitios de Unión , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Proteínas del Tejido Nervioso/aislamiento & purificación , Factores de Empalme de ARN/aislamiento & purificación
6.
Eur J Med Chem ; 175: 107-113, 2019 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-31077996

RESUMEN

The DNA-repair enzyme MutT homolog 1 (MTH1) is a potential target for a broad range of tumors. Its substrate binding site features a non-catalytical pair of aspartic acids which resembles the catalytic dyad of aspartic proteases. We hypothesized that inhibitors of the latter might be re-targeted for MTH1 despite the two enzyme classes having different substrates and catalyze different reactions. We selected from the crystal structures of holo aspartic proteases a library of nearly 350 inhibitors for in silico screening. Three fragment hits were identified by docking and scoring according to a force field-based energy with continuum dielectric solvation. These fragments showed good ligand efficiency in a colorimetric assay (MW <300 Da and IC50<50µM). Molecular dynamics simulations were carried out for determining the most favorable interaction patterns. On the basis of the simulation results we evaluated in vitro seven commercially available compounds, two of which showed submicromolar potency for MTH1. To obtain definitive evidence of the predicted binding modes we solved the crystal structures of five of the 10 inhibitors predicted in silico. The final step of hit optimization was guided by protein crystallography and involved the synthesis of a single compound, the lead 11, which shows nanomolar affinity for MTH1 in two orthogonal binding assays, and selectivity higher than 2000-fold against its original target (BACE1). The high rate of fragment-hit identification and the fast optimization suggest that ligand retargeting by binding site analogy is an efficient strategy for drug design.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Ácido Aspártico Endopeptidasas/antagonistas & inhibidores , Enzimas Reparadoras del ADN/antagonistas & inhibidores , Diseño de Fármacos , Inhibidores Enzimáticos/farmacología , Monoéster Fosfórico Hidrolasas/antagonistas & inhibidores , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Ácido Aspártico Endopeptidasas/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Enzimas Reparadoras del ADN/metabolismo , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/metabolismo , Ligandos , Simulación del Acoplamiento Molecular , Estructura Molecular , Monoéster Fosfórico Hidrolasas/metabolismo , Reproducibilidad de los Resultados
7.
Anal Chem ; 91(4): 3078-3084, 2019 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-30715855

RESUMEN

We have developed a homogeneous time-resolved fluorescence (HTRF)-based enzyme assay to measure the catalytic activity of N6-methyladenosine (m6A) methyltransferases and demethylases. The assay detects m6A modifications using the natural m6A-binding proteins (m6A readers). The reaction product or substrate m6A-containing RNA and the m6A reader protein are fluorescently labeled such that their proximity during binding initiates Förster resonance energy transfer (FRET). We show that our HTRF assay can be used for high-throughput screening, which will facilitate the discovery of small-molecule modulators of m6A (de)methylases.


Asunto(s)
Desmetilasa de ARN, Homólogo 5 de AlkB/análisis , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/análisis , Transferencia Resonante de Energía de Fluorescencia , Metiltransferasas/análisis , Desmetilasa de ARN, Homólogo 5 de AlkB/metabolismo , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/metabolismo , Humanos , Metiltransferasas/metabolismo
8.
ACS Med Chem Lett ; 9(9): 929-934, 2018 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-30258543

RESUMEN

We analyze 20 crystal structures of complexes between the CBP bromodomain and small-molecule ligands that belong to eight different chemotypes identified by docking. The binding motif of the moiety that mimics the natural ligand (acetylated side chain of lysine) at the bottom of the binding pocket is conserved. In stark contrast, the rest of the ligands form different interactions with different side chains and backbone polar groups on the outer rim of the binding pocket. Hydrogen bonds are direct or water-bridged. van der Waals contacts are optimized by rotations of hydrophobic side chains and a slight inward displacement of the ZA loop. Rare types of interactions are observed for some of the ligands.

9.
Curr Opin Struct Biol ; 48: 93-102, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29149726

RESUMEN

Recent years have witnessed rapid developments of computer-aided drug design methods, which have reached accuracy that allows their routine practical applications in drug discovery campaigns. Protein structure-based methods are useful for the prediction of binding modes of small molecules and their relative affinity. The high-throughput docking of up to 106 small molecules followed by scoring based on implicit-solvent force field can robustly identify micromolar binders using a rigid protein target. Molecular dynamics with explicit solvent is a low-throughput technique for the characterization of flexible binding sites and accurate evaluation of binding pathways, kinetics, and thermodynamics. In this review we highlight recent advancements in applications of ligand docking tools and molecular dynamics simulations to ligand identification and optimization.


Asunto(s)
Descubrimiento de Drogas/métodos , Drogas en Investigación/química , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Proteínas/química , Solventes/química , Sitios de Unión , Diseño de Fármacos , Ensayos Analíticos de Alto Rendimiento , Humanos , Cinética , Ligandos , Unión Proteica , Conformación Proteica , Proteínas/agonistas , Proteínas/antagonistas & inhibidores , Relación Estructura-Actividad , Termodinámica , Interfaz Usuario-Computador
10.
EMBO J ; 35(22): 2417-2434, 2016 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-27729457

RESUMEN

The posttranscriptional addition of nucleotides to the 3' end of RNA regulates the maturation, function, and stability of RNA species in all domains of life. Here, we show that in flies, 3' terminal RNA uridylation triggers the processive, 3'-to-5' exoribonucleolytic decay via the RNase II/R enzyme CG16940, a homolog of the human Perlman syndrome exoribonuclease Dis3l2. Together with the TUTase Tailor, dmDis3l2 forms the cytoplasmic, terminal RNA uridylation-mediated processing (TRUMP) complex that functionally cooperates in the degradation of structured RNA RNA immunoprecipitation and high-throughput sequencing reveals a variety of TRUMP complex substrates, including abundant non-coding RNA, such as 5S rRNA, tRNA, snRNA, snoRNA, and the essential RNase MRP Based on genetic and biochemical evidence, we propose a key function of the TRUMP complex in the cytoplasmic quality control of RNA polymerase III transcripts. Together with high-throughput biochemical characterization of dmDis3l2 and bacterial RNase R, our results imply a conserved molecular function of RNase II/R enzymes as "readers" of destabilizing posttranscriptional marks-uridylation in eukaryotes and adenylation in prokaryotes-that play important roles in RNA surveillance.


Asunto(s)
Citoplasma/química , Citoplasma/metabolismo , Drosophila/metabolismo , Exorribonucleasas/metabolismo , Procesamiento Postranscripcional del ARN , Estabilidad del ARN , Animales , Línea Celular
11.
Elife ; 52016 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-27627798

RESUMEN

Methylation of adenosines at the N(6) position (m(6)A) is a dynamic and abundant epitranscriptomic mark that regulates critical aspects of eukaryotic RNA metabolism in numerous biological processes. The RNA methyltransferases METTL3 and METTL14 are components of a multisubunit m(6)A writer complex whose enzymatic activity is substantially higher than the activities of METTL3 or METTL14 alone. The molecular mechanism underpinning this synergistic effect is poorly understood. Here we report the crystal structure of the catalytic core of the human m(6)A writer complex comprising METTL3 and METTL14. The structure reveals the heterodimeric architecture of the complex and donor substrate binding by METTL3. Structure-guided mutagenesis indicates that METTL3 is the catalytic subunit of the complex, whereas METTL14 has a degenerate active site and plays non-catalytic roles in maintaining complex integrity and substrate RNA binding. These studies illuminate the molecular mechanism and evolutionary history of eukaryotic m(6)A modification in post-transcriptional genome regulation.


Asunto(s)
Metiltransferasas/química , Complejos Multiproteicos/química , Proteínas de Unión a Caperuzas de ARN/química , Cristalografía por Rayos X , Humanos , Metilación , Metiltransferasas/genética , Complejos Multiproteicos/genética , Mutagénesis , Conformación Proteica , Proteínas de Unión a Caperuzas de ARN/genética
12.
Annu Rev Pharmacol Toxicol ; 56: 191-209, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26738474

RESUMEN

The 26S proteasome is a 2.5-MDa complex, and it operates at the executive end of the ubiquitin-proteasome pathway. It is a proven target for therapeutic agents for the treatment of some cancers and autoimmune diseases, and moreover, it has potential as a target of antibacterial agents. Most inhibitors, including all molecules approved for clinical use, target the 20S proteolytic core complex; its structure was determined two decades ago. Hitherto, efforts to develop inhibitors targeting the 19S regulatory particle subunits have been less successful. This is, in part, because the molecular architecture of this subcomplex has been, until recently, poorly understood, and high-resolution structures have been available only for a few subunits. In this review, we describe, from a structural perspective, the development of inhibitory molecules that target both the 20S and 19S subunits of the proteasome. We highlight the recent progress achieved in structure-based drug-discovery approaches, and we discuss the prospects for further improvement.


Asunto(s)
Complejo de la Endopetidasa Proteasomal/metabolismo , Inhibidores de Proteasoma/farmacología , Inhibidores de Proteasoma/uso terapéutico , Animales , Descubrimiento de Drogas/métodos , Humanos , Proteolisis/efectos de los fármacos
13.
Proc Natl Acad Sci U S A ; 111(15): 5544-9, 2014 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-24706844

RESUMEN

The 26S proteasome is a 2.5 MDa molecular machine that executes the degradation of substrates of the ubiquitin-proteasome pathway. The molecular architecture of the 26S proteasome was recently established by cryo-EM approaches. For a detailed understanding of the sequence of events from the initial binding of polyubiquitylated substrates to the translocation into the proteolytic core complex, it is necessary to move beyond static structures and characterize the conformational landscape of the 26S proteasome. To this end we have subjected a large cryo-EM dataset acquired in the presence of ATP and ATP-γS to a deep classification procedure, which deconvolutes coexisting conformational states. Highly variable regions, such as the density assigned to the largest subunit, Rpn1, are now well resolved and rendered interpretable. Our analysis reveals the existence of three major conformations: in addition to the previously described ATP-hydrolyzing (ATPh) and ATP-γS conformations, an intermediate state has been found. Its AAA-ATPase module adopts essentially the same topology that is observed in the ATPh conformation, whereas the lid is more similar to the ATP-γS bound state. Based on the conformational ensemble of the 26S proteasome in solution, we propose a mechanistic model for substrate recognition, commitment, deubiquitylation, and translocation into the core particle.


Asunto(s)
Microscopía por Crioelectrón/estadística & datos numéricos , Procesamiento de Imagen Asistido por Computador/clasificación , Procesamiento de Imagen Asistido por Computador/métodos , Modelos Moleculares , Conformación Molecular , Complejo de la Endopetidasa Proteasomal/química , Bases de Datos Factuales
14.
Proc Natl Acad Sci U S A ; 111(8): 2984-9, 2014 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-24516147

RESUMEN

The ATP-dependent degradation of polyubiquitylated proteins by the 26S proteasome is essential for the maintenance of proteome stability and the regulation of a plethora of cellular processes. Degradation of substrates is preceded by the removal of polyubiquitin moieties through the isopeptidase activity of the subunit Rpn11. Here we describe three crystal structures of the heterodimer of the Mpr1-Pad1-N-terminal domains of Rpn8 and Rpn11, crystallized as a fusion protein in complex with a nanobody. This fusion protein exhibits modest deubiquitylation activity toward a model substrate. Full activation requires incorporation of Rpn11 into the 26S proteasome and is dependent on ATP hydrolysis, suggesting that substrate processing and polyubiquitin removal are coupled. Based on our structures, we propose that premature activation is prevented by the combined effects of low intrinsic ubiquitin affinity, an insertion segment acting as a physical barrier across the substrate access channel, and a conformationally unstable catalytic loop in Rpn11. The docking of the structure into the proteasome EM density revealed contacts of Rpn11 with ATPase subunits, which likely stabilize the active conformation and boost the affinity for the proximal ubiquitin moiety. The narrow space around the Rpn11 active site at the entrance to the ATPase ring pore is likely to prevent erroneous deubiquitylation of folded proteins.


Asunto(s)
Endopeptidasas/química , Modelos Moleculares , Complejo de la Endopetidasa Proteasomal/química , Conformación Proteica , Proteínas Recombinantes de Fusión/química , Proteínas de Saccharomyces cerevisiae/química , Cristalografía , Dimerización , Endopeptidasas/metabolismo , Modelos Biológicos , Poliubiquitina/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Anticuerpos de Dominio Único/química , Anticuerpos de Dominio Único/metabolismo
15.
Nat Protoc ; 8(11): 2309-24, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24157549

RESUMEN

This protocol describes the screening of a library of low-molecular-weight compounds (fragments) using a series of biophysical ligand-binding assays. Fragment-based drug discovery (FBDD) has emerged as a successful method to design high-affinity ligands for biomacromolecules of therapeutic interest. It involves detecting relatively weak interactions between the fragments and a target macromolecule using sensitive biophysical techniques. These weak binders provide a starting point for the development of inhibitors with submicromolar affinity. Here we describe an efficient fragment screening cascade that can identify binding fragments (hits) within weeks. It is divided into three stages: (i) preliminary screening using differential scanning fluorimetry (DSF), (ii) validation by NMR spectroscopy and (iii) characterization of binding fragments by isothermal titration calorimetry (ITC) and X-ray crystallography. Although this protocol is readily applicable in academic settings because of its emphasis on low cost and medium-throughput early-stage screening technologies, the core principle of orthogonal validation makes it robust enough to meet the quality standards of an industrial laboratory.


Asunto(s)
Descubrimiento de Drogas/métodos , Calorimetría/métodos , Cristalografía por Rayos X/métodos , Fluorometría/métodos , Enlace de Hidrógeno , Indoles/química , Ligandos , Espectroscopía de Resonancia Magnética/métodos , Péptido Sintasas/química , Bibliotecas de Moléculas Pequeñas
16.
Structure ; 21(9): 1551-62, 2013 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-24010714

RESUMEN

The 26S proteasome is a 2.5 MDa molecular machine for the degradation of substrates of the ubiquitin-proteasome pathway with a key role in cellular proteostasis. Until recently, only the structure of its core particle, the 20S proteasome, could be studied in detail, whereas the 19S regulatory particle or the holocomplex remained elusive. Novel integrative approaches have now revealed the molecular architecture of the entire complex and provided the first insights into the conformational changes during its functional cycle. Here we review the problems in structural studies of the 26S proteasome, the methods that made possible its structure determination, the architectural principles of the holocomplex, and its conformational space. These advances provide valuable insights into the mechanism of substrate recruitment and processing preceding their destruction in the 20S core particle.


Asunto(s)
Complejo de la Endopetidasa Proteasomal/química , Animales , Humanos , Modelos Moleculares , Complejo de la Endopetidasa Proteasomal/fisiología , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteolisis , Ubiquitinación
17.
Proc Natl Acad Sci U S A ; 110(18): 7264-9, 2013 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-23589842

RESUMEN

The 26S proteasome is a 2.5-MDa, ATP-dependent multisubunit proteolytic complex that processively destroys proteins carrying a degradation signal. The proteasomal ATPase heterohexamer is a key module of the 19S regulatory particle; it unfolds substrates and translocates them into the 20S core particle where degradation takes place. We used cryoelectron microscopy single-particle analysis to obtain insights into the structural changes of 26S proteasome upon the binding and hydrolysis of ATP. The ATPase ring adopts at least two distinct helical staircase conformations dependent on the nucleotide state. The transition from the conformation observed in the presence of ATP to the predominant conformation in the presence of ATP-γS induces a sliding motion of the ATPase ring over the 20S core particle ring leading to an alignment of the translocation channels of the ATPase and the core particle gate, a conformational state likely to facilitate substrate translocation. Two types of intersubunit modules formed by the large ATPase domain of one ATPase subunit and the small ATPase domain of its neighbor exist. They resemble the contacts observed in the crystal structures of ClpX and proteasome-activating nucleotidase, respectively. The ClpX-like contacts are positioned consecutively and give rise to helical shape in the hexamer, whereas the proteasome-activating nucleotidase-like contact is required to close the ring. Conformational switching between these forms allows adopting different helical conformations in different nucleotide states. We postulate that ATP hydrolysis by the regulatory particle ATPase (Rpt) 5 subunit initiates a cascade of conformational changes, leading to pulling of the substrate, which is primarily executed by Rpt1, Rpt2, and Rpt6.


Asunto(s)
Adenosina Trifosfato/análogos & derivados , Nucleótidos/metabolismo , Complejo de la Endopetidasa Proteasomal/química , Complejo de la Endopetidasa Proteasomal/metabolismo , Saccharomyces cerevisiae/enzimología , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Sitios de Unión , Modelos Moleculares , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Subunidades de Proteína/química , Transporte de Proteínas , Especificidad por Sustrato
18.
J Mol Biol ; 425(9): 1415-23, 2013 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-23416139

RESUMEN

The 26S proteasome is the executive arm of the ubiquitin-proteasome system. This 2.5-MDa complex comprising the 20S core particle (CP) and the 19S regulatory particle (RP) is able to effectively execute its function due to a tightly regulated network of allosteric interactions. From this perspective, we summarize the current state of knowledge on these regulatory interdependencies. We classify them into the three functional layers-within the CP, within the RP, and at the CP-RP interface. In the CP, allosteric effects are thought to couple the gate opening and substrate proteolysis. Gate opening depends on events occurring in the RP-ATP hydrolysis and substrate binding. Finally, a number of processes occurring solely in the RP, like ATP hydrolysis or substrate deubiquitylation, are also proposed to be allosterically regulated. Recent advances in structural studies of 26S proteasome open up new avenues for dissecting and rationalizing the molecular basis of these regulatory networks.


Asunto(s)
Complejo de la Endopetidasa Proteasomal/química , Complejo de la Endopetidasa Proteasomal/metabolismo , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/metabolismo , Regulación Alostérica , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Humanos , Modelos Moleculares
20.
Angew Chem Int Ed Engl ; 51(31): 7680-3, 2012 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-22730171

RESUMEN

Probing the pocket: A high-throughput fluorescence-based thermal shift (FTS) assay utilized different forms of a protein (in gray) to establish the binding mode of a ligand (see picture). The assay serves in the rapid evaluation of structure-activity binding-mode relationships for a series of ligands of Plk1, an important target of anticancer therapy.


Asunto(s)
Fluorescencia , Ensayos Analíticos de Alto Rendimiento , Temperatura , Sitios de Unión , Calorimetría , Ligandos , Modelos Moleculares , Estructura Molecular , Mutación , Proteínas/química , Proteínas/genética , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...