Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 12(1): 5647, 2021 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-34561431

RESUMEN

Comparing transcript levels between healthy and diseased individuals allows the identification of differentially expressed genes, which may be causes, consequences or mere correlates of the disease under scrutiny. We propose a method to decompose the observational correlation between gene expression and phenotypes driven by confounders, forward- and reverse causal effects. The bi-directional causal effects between gene expression and complex traits are obtained by Mendelian Randomization integrating summary-level data from GWAS and whole-blood eQTLs. Applying this approach to complex traits reveals that forward effects have negligible contribution. For example, BMI- and triglycerides-gene expression correlation coefficients robustly correlate with trait-to-expression causal effects (rBMI = 0.11, PBMI = 2.0 × 10-51 and rTG = 0.13, PTG = 1.1 × 10-68), but not detectably with expression-to-trait effects. Our results demonstrate that studies comparing the transcriptome of diseased and healthy subjects are more prone to reveal disease-induced gene expression changes rather than disease causing ones.


Asunto(s)
Algoritmos , Perfilación de la Expresión Génica/métodos , Predisposición Genética a la Enfermedad/genética , Estudio de Asociación del Genoma Completo/métodos , Polimorfismo de Nucleótido Simple , Transcriptoma/genética , Causalidad , Estudios de Asociación Genética/métodos , Humanos , Análisis de la Aleatorización Mendeliana/métodos , Fenotipo , Sitios de Carácter Cuantitativo/genética
2.
Nat Commun ; 8(1): 1818, 2017 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-29180639

RESUMEN

Age-associated changes in chromatin structure have a major impact on organismal longevity. Despite being a central part of the ageing process, the organismal responses to the changes in chromatin organization remain unclear. Here we show that moderate disturbance of histone balance during C. elegans development alters histone levels and triggers a stress response associated with increased expression of cytosolic small heat-shock proteins. This stress response is dependent on the transcription factor, HSF-1, and the chromatin remodeling factor, ISW-1. In addition, we show that mitochondrial stress during developmental stages also modulates histone levels, thereby activating a cytosolic stress response similar to that caused by changes in histone balance. These data indicate that histone and mitochondrial perturbations are both monitored through chromatin remodeling and involve the activation of a cytosolic response that affects organismal longevity. HSF-1 and ISW-1 hence emerge as a central mediator of this multi-compartment proteostatic response regulating longevity.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/metabolismo , Cromatina/metabolismo , Proteínas de Unión al ADN/metabolismo , Mitocondrias/metabolismo , Animales , Secuencia de Bases , Caenorhabditis elegans/genética , Ensamble y Desensamble de Cromatina/fisiología , Regulación de la Expresión Génica , Proteínas de Choque Térmico Pequeñas/metabolismo , Longevidad/fisiología , Presión Osmótica , Estrés Psicológico , Factores de Transcripción/metabolismo , Factores de Transcripción/fisiología
3.
Cell Rep ; 9(1): 336-348, 2014 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-25284780

RESUMEN

Organisms need to assess their nutritional state and adapt their digestive capacity to the demands for various nutrients. Modulation of digestive enzyme production represents a rational step to regulate nutriment uptake. However, the role of digestion in nutrient homeostasis has been largely neglected. In this study, we analyzed the mechanism underlying glucose repression of digestive enzymes in the adult Drosophila midgut. We demonstrate that glucose represses the expression of many carbohydrases and lipases. Our data reveal that the consumption of nutritious sugars stimulates the secretion of the transforming growth factor ß (TGF-ß) ligand, Dawdle, from the fat body. Dawdle then acts via circulation to activate TGF-ß/Activin signaling in the midgut, culminating in the repression of digestive enzymes that are highly expressed during starvation. Thus, our study not only identifies a mechanism that couples sugar sensing with digestive enzyme expression but points to an important role of TGF-ß/Activin signaling in sugar metabolism.


Asunto(s)
Activinas/metabolismo , Glicósido Hidrolasas/biosíntesis , Lipoproteína Lipasa/biosíntesis , Factor de Crecimiento Transformador beta/metabolismo , Animales , Drosophila , Glucosa/metabolismo , Glicósido Hidrolasas/metabolismo , Lipoproteína Lipasa/metabolismo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA