Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
1.
Front Immunol ; 15: 1334616, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38571946

RESUMEN

Staphylococcus aureus is a highly successful pathogen infecting various body parts and forming biofilms on natural and artificial surfaces resulting in difficult-to-treat and chronic infections. We investigated the secreted cytokines and proteomes of isolated peripheral blood mononuclear cells (PBMCs) from healthy volunteers exposed to methicillin-resistant S. aureus (MRSA) biofilms or planktonic bacteria. Additionally, the cytokine profiles in sera from patients with community-acquired pneumonia (CAP) caused by S. aureus were investigated. The aim was to gain insights into the immune response involved and differentiate between the planktonic and sessile MRSA forms. We identified 321 and 298 targets that were significantly differently expressed in PBMCs when exposed to planktonic or biofilm-embedded bacteria, respectively. PBMCs exposed to planktonic MRSA cells secreted increased levels of TNF-α, while IL-18 was elevated when exposed to the biofilm. The machine-learning analyses of the cytokine profiles obtained for the in vitro PBMCs and CAP sera distinguished between the two types of bacteria forms based on cytokines IL-18, IL12, and IL-17, and with a lower importance IL-6. Particularly, IL-18 which has not been correlated with S. aureus biofilms so far might represent a suitable marker for monitoring chronification during MRSA infection to individualize the therapy, but this hypothesis must be proved in clinical trials.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Humanos , Staphylococcus aureus Resistente a Meticilina/fisiología , Citocinas , Staphylococcus aureus , Interleucina-18 , Proteoma , Plancton , Leucocitos Mononucleares , Biopelículas
2.
JAC Antimicrob Resist ; 6(2): dlae045, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38500519

RESUMEN

Background: In clinical routine, voriconazole plasma trough levels (Cmin) out of target range are often observed with little knowledge about predisposing influences. Objectives: To determine the distribution and influencing factors on voriconazole blood levels of patients treated on intensive- or intermediate care units (ICU/IMC). Patients and methods: Data were collected retrospectively from patients with at least one voriconazole trough plasma level on ICU/IMC (n = 153) to determine the proportion of sub-, supra- or therapeutic plasma levels. Ordinal logistic regression analysis was used to assess factors hindering patients to reach voriconazole target range. Results: Of 153 patients, only 71 (46%) reached the target range at the first therapeutic drug monitoring, whereas 66 (43%) patients experienced too-low and 16 (10%) too-high plasma levels. Ordinal logistic regression analysis identified the use of extra corporeal membrane oxygenation (ECMO), low international normalized ratio (INR) and aspartate-aminotransferase (AST) serum levels as predictors for too-low plasma levels. Conclusion: Our data highlight an association of ECMO, INR and AST levels with voriconazole plasma levels, which should be considered in the care of critically ill patients to optimize antifungal therapy with voriconazole.

3.
Microbiol Spectr ; 12(3): e0307823, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38353551

RESUMEN

An increasing amount of evidence has linked critical illness with dysbiotic microbiome signatures in different body sites. The disturbance of the indigenous microbiota structures has been further associated with disease severity and outcome and has been suggested to pose an additional risk for complications in intensive care units (ICUs), including hospital-acquired infections. A better understanding of the microbial dysbiosis in critical illness might thus help to develop strategies for the prevention of such complications. While most of the studies addressing microbiome changes in ICU patients have focused on the gut, the lung, or the oral cavity, little is known about the microbial communities on the skin of ICU patients. Since the skin is the outermost organ and the first immune barrier against pathogens, its microbiome might play an important role in the risk management for critically ill patients. This observational study characterizes the skin microbiome in ICU patients covering five different body sites at the time of admission. Our results show a profound dysbiosis on the skin of critically ill patients, which is characterized by a loss of site specificity and an overrepresentation of gut bacteria on all skin sites when compared to a healthy group. This study opens a new avenue for further investigations on the effect of skin dysbiosis in the ICU setting and points out the need of strategies for the management of dysbiosis in critically ill patients.IMPORTANCEUnbalanced gut microbiota in critically ill patients has been associated with poor outcome and complications during the intensive care unit (ICU) stay. Whether the disturbance of the microbial communities in these patients is extensive for other body sites, such as the skin, is largely unknown. The skin not only is the largest organ of the body but also serves as the first immune barrier against potential pathogens. This study characterized the skin microbiota on five different body sites in ICU patients at the time of admission. The observed disturbance of the bacterial communities might help to develop new strategies in the risk management of critically ill patients.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Humanos , Enfermedad Crítica , Disbiosis/microbiología , Bacterias
4.
J Innate Immun ; 16(1): 105-132, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38232720

RESUMEN

BACKGROUND: Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) is known as a major receptor for oxidized low-density lipoproteins (oxLDL) and plays a significant role in the genesis of atherosclerosis. Recent research has shown its involvement in cancer, ischemic stroke, and diabetes. LOX-1 is a C-type lectin receptor and is involved in the activation of immune cells and inflammatory processes. It may further interact with pathogens, suggesting a role in infections or the host's response. SUMMARY: This review compiles the current knowledge of potential implications of LOX-1 in inflammatory processes and in host-pathogen interactions with a particular emphasis on its regulatory role in immune responses. Also discussed are genomic and structural variations found in LOX-1 homologs across different species as well as potential involvements of LOX-1 in inflammatory processes from the angle of different cell types and organ-specific interactions. KEY MESSAGES: The results presented reveal both similar and different structures in human and murine LOX-1 and provide clues as to the possible origins of different modes of interaction. These descriptions raise concerns about the suitability, particularly of mouse models, that are often used in the analysis of its functionality in humans. Further research should also aim to better understand the mostly unknown binding and interaction mechanisms between LOX-1 and different pathogens. This pursuit will not only enhance our understanding of LOX-1 involvement in inflammatory processes but also identify potential targets for immunomodulatory approaches.


Asunto(s)
Interacciones Huésped-Patógeno , Inflamación , Receptores Depuradores de Clase E , Animales , Humanos , Ratones , Aterosclerosis/inmunología , Aterosclerosis/metabolismo , Interacciones Huésped-Patógeno/inmunología , Inflamación/inmunología , Lipoproteínas LDL/metabolismo , Receptores Depuradores de Clase E/metabolismo , Receptores Depuradores de Clase E/genética
5.
HIV Med ; 25(4): 479-483, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38043508

RESUMEN

PURPOSE: To describe the clinical characteristics of refugees with HIV from Ukraine that seek continuation of medical care in Germany. METHODS: Fourty-six refugees with HIV that had left Ukraine between 24 February and 30 December 2022 were examined. Information on patients' history was obtained using a standardized questionnaire for clinical care. Interviews were conducted in Russian during their first clinical presentation. RESULTS: Fourty-six persons (41 females and 5 males) were included and their mean age was 39.6 (±8.4) years. The mean time since HIV diagnosis was 8.0 (median, IQR 7.15) years and 70.3% of participants currently received tenfofovir-DF, lamividine and dolutegravir. Most refugees had an undetectable HIV viral load and their current mean CD4 T cell count was 702 (SD ± 289) per µL. Serology revealed previous hepatitis B infection in 50.4% without evidence for replication, with undetectable anti-hepatitis B surface antigen in the remaining refugees. Antibodies against hepatitis C were present in 23 refugees (50%), but only 10 patients had been diagnosed with hepatitis C previously. Five refugees had undergone successful antiviral treatment for hepatitis C. Detectable HCV-RNA was evident in nine patients (19.6%). Sixteen (38.6%) refugees had a positive tuberculosis (TB) interferon gamma release assay, and four were on TB treatment for previously diagnosed infection. One had been diagnosed with multidrug-resistant (MDR) TB, two with pre-extensively drug-resistant (pre-XDR) TB and two with XDR TB and were treated with combinations of second-line and novel agents according to WHO guidelines. CONCLUSIONS: Based on this preliminary analysis of a not fully representative cohort, refugees with HIV from Ukraine were young, mostly healthy females highly adherent to antiretroviral therapy. The rate of transmittable co-infections urges early diagnostic evaluation and treatment.


Asunto(s)
Infecciones por VIH , Hepatitis C , Refugiados , Tuberculosis Resistente a Múltiples Medicamentos , Tuberculosis , Masculino , Femenino , Humanos , Adulto , Infecciones por VIH/diagnóstico , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/epidemiología , Ucrania/epidemiología , Tuberculosis/tratamiento farmacológico , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Hepatitis C/tratamiento farmacológico , Hepacivirus , Antituberculosos/uso terapéutico
6.
J Fungi (Basel) ; 9(10)2023 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-37888270

RESUMEN

Neutrophils are critical phagocytic cells in innate immunity, playing a significant role in defending against invasive fungal pathogens. This study aimed to explore the transcriptional activation of human neutrophils in response to different fungal pathogens, including Candida albicans and Aspergillus fumigatus, compared to the bacterial pathogen Escherichia coli. We identified distinct transcriptional profiles and stress-related pathways in neutrophils during fungal infections, highlighting their functional diversity and adaptability. The transcriptional response was largely redundant across all pathogens in immune-relevant categories and cytokine pathway activation. However, differences in the magnitude of differentially expressed genes (DEGs) were observed, with A. fumigatus inducing a lower transcriptional effect compared to C. albicans and E. coli. Notably, specific gene signatures associated with cell death were differentially regulated by fungal pathogens, potentially increasing neutrophil susceptibility to autophagy, pyroptosis, and neutrophil extracellular trap (NET) formation. These findings provide valuable insights into the complex immunological responses of neutrophils during fungal infections, offering new avenues for diagnostic and therapeutic strategies, particularly in the management of invasive fungal diseases.

7.
J Fungi (Basel) ; 9(9)2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37755011

RESUMEN

Pneumocystis jirovecii, a fungus causing severe Pneumocystis pneumonia (PCP) in humans, has long been described as non-culturable. Only isolated short-term experiments with P. jirovecii and a small number of experiments involving animal-derived Pneumocystis species have been published to date. However, P. jirovecii culture conditions may differ significantly from those of animal-derived Pneumocystis, as there are major genotypic and phenotypic differences between them. Establishing a well-performing P. jirovecii cultivation is crucial to understanding PCP and its pathophysiological processes. The aim of this study, therefore, was to develop an axenic culture for Pneumocystis jirovecii. To identify promising approaches for cultivation, a literature survey encompassing animal-derived Pneumocystis cultures was carried out. The variables identified, such as incubation time, pH value, vitamins, amino acids, and other components, were trialed and adjusted to find the optimum conditions for P. jirovecii culture. This allowed us to develop a medium that produced a 42.6-fold increase in P. jirovecii qPCR copy numbers after a 48-day culture. Growth was confirmed microscopically by the increasing number and size of actively growing Pneumocystis clusters in the final medium, DMEM-O3. P. jirovecii doubling time was 8.9 days (range 6.9 to 13.6 days). In conclusion, we successfully cultivated P. jirovecii under optimized cell-free conditions in a 70-day long-term culture for the first time. However, further optimization of the culture conditions for this slow grower is indispensable.

9.
mSphere ; 8(4): e0014223, 2023 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-37358300

RESUMEN

Streptococcus pneumoniae-induced hemolytic uremic syndrome (Sp-HUS) is a kidney disease characterized by microangiopathic hemolytic anemia, thrombocytopenia, and acute kidney injury. This disease is frequently underdiagnosed and its pathophysiology is poorly understood. In this work, we compared clinical strains, isolated from infant Sp-HUS patients, with a reference pathogenic strain D39, for host cytotoxicity and further explored the role of Sp-derived extracellular vesicles (EVs) in the pathogenesis of an HUS infection. In comparison with the wild-type strain, pneumococcal HUS strains caused significant lysis of human erythrocytes and increased the release of hydrogen peroxide. Isolated Sp-HUS EVs were characterized by performing dynamic light-scattering microscopy and proteomic analysis. Sp-HUS strain released EVs at a constant concentration during growth, yet the size of the EVs varied and several subpopulations emerged at later time points. The cargo of the Sp-HUS EVs included several virulence factors at high abundance, i.e., the ribosomal subunit assembly factor BipA, the pneumococcal surface protein A, the lytic enzyme LytC, several sugar utilization, and fatty acid synthesis proteins. Sp-HUS EVs strongly downregulated the expression of the endothelial surface marker platelet endothelial cell adhesion molecule-1 and were internalized by human endothelial cells. Sp-HUS EVs elicited the release of pro-inflammatory cytokines (interleukin [IL]-1ß, IL-6) and chemokines (CCL2, CCL3, CXCL1) by human monocytes. These findings shed new light on the overall function of Sp-EVs, in the scope of infection-mediated HUS, and suggest new avenues of research for exploring the usefulness of Sp-EVs as therapeutic and diagnostic targets. IMPORTANCE Streptococcus pneumoniae-associated hemolytic uremic syndrome (Sp-HUS) is a serious and underdiagnosed deadly complication of invasive pneumococcal disease. Despite the introduction of the pneumococcal vaccine, cases of Sp-HUS continue to emerge, especially in children under the age of 2. While a lot has been studied regarding pneumococcal proteins and their role on Sp-HUS pathophysiology, little is known about the role of extracellular vesicles (EVs). In our work, we isolate and initially characterize EVs from a reference pathogenic strain (D39) and a strain isolated from a 2-year-old patient suffering from Sp-HUS. We demonstrate that despite lacking cytotoxicity toward human cells, Sp-HUS EVs are highly internalized by endothelial cells and can trigger cytokine and chemokine production in monocytes. In addition, this work specifically highlights the distinct morphological characteristics of Sp-HUS EVs and their unique cargo. Overall, this work sheds new light into potentially relevant players contained in EVs that might elucidate about pneumococcal EVs biogenesis or pose as interesting candidates for vaccine design.


Asunto(s)
Vesículas Extracelulares , Síndrome Hemolítico-Urémico , Lactante , Niño , Humanos , Preescolar , Streptococcus pneumoniae , Células Endoteliales/patología , Proteómica , Síndrome Hemolítico-Urémico/diagnóstico , Síndrome Hemolítico-Urémico/etiología , Síndrome Hemolítico-Urémico/patología , Citocinas , Vacunas Neumococicas
10.
Neuropharmacology ; 235: 109568, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37182790

RESUMEN

Depression is highly prevalent (6% 1-year prevalence) and is the second leading cause of disability worldwide. Available treatment options for depression are far from optimal, with response rates only around 50%. This is most likely related to a heterogeneous clinical presentation of major depression disorder (MDD), suggesting different manifestations of underlying pathophysiological mechanisms. Poorer treatment outcomes to first-line antidepressants were reported in MDD patients endorsing an "atypical" symptom profile that is characterized by preserved reactivity in mood, increased appetite, hypersomnia, a heavy sensation in the limbs, and interpersonal rejection sensitivity. In recent years, evidence has emerged that immunometabolic biological dysregulation is an important underlying pathophysiological mechanism in depression, which maps more consistently to atypical features. In the last few years human microbial residents have emerged as a key influencing variable associated with immunometabolic dysregulations in depression. The microbiome plays a critical role in the training and development of key components of the host's innate and adaptive immune systems, while the immune system orchestrates the maintenance of key features of the host-microbe symbiosis. Moreover, by being a metabolically active ecosystem commensal microbes may have a huge impact on signaling pathways, involved in underlying mechanisms leading to atypical depressive symptoms. In this review, we discuss the interplay between the microbiome and immunometabolic imbalance in the context of atypical depressive symptoms. Although research in this field is in its infancy, targeting biological determinants in more homogeneous clinical presentations of MDD may offer new avenues for the development of novel therapeutic strategies for treatment-resistant depression. This article is part of the Special Issue on "Microbiome & the Brain: Mechanisms & Maladies".


Asunto(s)
Trastorno Depresivo Mayor , Microbiota , Humanos , Trastorno Depresivo Mayor/metabolismo , Encéfalo/metabolismo
11.
Front Immunol ; 14: 1046374, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37063823

RESUMEN

Exposure of human monocytes to lipopolysaccharide (LPS) or other pathogen-associated molecular pattern (PAMPs) induces a temporary insensitivity to subsequent LPS challenges, a cellular state called endotoxin tolerance (ET), associated with the pathogenesis of sepsis. In this study, we aimed to characterize the cellular state of human monocytes from healthy donors stimulated with Staphylococcus aureus in comparison to TLR2-specific ligands. We analyzed S. aureus induced gene expression changes after 2 and 24 hours by amplicon sequencing (RNA-AmpliSeq) and compared the pro-inflammatory response after 2 hours with the response in re-stimulation experiments. In parallel, glycoprotein expression changes in human monocytes after 24 hours of S. aureus stimulation were analyzed by proteomics and compared to stimulation experiments with TLR2 ligands Malp-2 and Pam3Cys and TLR4 ligand LPS. Finally, we analyzed peripheral blood monocytes of patients with S. aureus bloodstream infection for their ex vivo inflammatory responses towards S. aureus stimulation and their glycoprotein expression profiles. Our results demonstrate that monocytes from healthy donors stimulated with S. aureus and TLR ligands of Gram-positive bacteria entered the tolerant cell state after activation similar to LPS treatment. In particular reduced gene expression of pro-inflammatory cytokines (TNF, IL1ß) and chemokines (CCL20, CCL3, CCL4, CXCL2, CXCL3 and CXCL8) could be demonstrated. Glycoprotein expression changes in monocytes tolerized by the different TLR agonists were highly similar while S. aureus-stimulated monocytes shared some of the PAMP-induced changes but also exhibited a distinct expression profile. 11 glycoproteins (CD44, CD274, DSC2, ICAM1, LAMP3, LILRB1, PTGS2, SLC1A3, CR1, FGL2, and HP) were similarly up- or downregulated in all four comparisons in the tolerant cell state. Monocytes from patients with S. aureus bacteremia revealed preserved pro-inflammatory responsiveness to S. aureus stimulation ex vivo, expressed increased CD44 mRNA but no other glycoprotein of the tolerance signature was differentially expressed.


Asunto(s)
Monocitos , Staphylococcus aureus , Humanos , Monocitos/metabolismo , Staphylococcus aureus/metabolismo , Lipopolisacáridos/farmacología , Lipopolisacáridos/metabolismo , Receptor Toll-Like 2/genética , Receptor Toll-Like 2/metabolismo , Glicoproteínas/metabolismo , Ligandos , Fibrinógeno/metabolismo
12.
Microorganisms ; 11(4)2023 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-37110443

RESUMEN

Staphylococcus aureus evades antibiotic therapy and antimicrobial defenses by entering human host cells. Bacterial transcriptomic analysis represents an invaluable tool to unravel the complex interplay between host and pathogen. Therefore, the extraction of high-quality RNA from intracellular S. aureus lays the foundation to acquire meaningful gene expression data. In this study, we present a novel and straightforward strategy to isolate RNA from internalized S. aureus after 90 min, 24 h, and 48 h postinfection. Real-time PCR data were obtained for the target genes agrA and fnba, which play major roles during infection. The commonly used reference genes gyrB, aroE, tmRNA, gmk, and hu were analyzed under different conditions: bacteria from culture (condition I), intracellular bacteria (condition II), and across both conditions I and II. The most stable reference genes were used for the normalization of agrA and fnbA. Delta Cq (quantification cycle) values had a relatively low variability and thus demonstrated the high quality of the extracted RNA from intracellular S. aureus during the early phase of infection. The established protocol allows the extraction and purification of intracellular staphylococcal RNA while minimizing the amount of host RNA in the sample. This approach can leverage reproducible gene expression data to study host-pathogen interactions.

13.
Dtsch Med Wochenschr ; 148(10): 620-625, 2023 05.
Artículo en Alemán | MEDLINE | ID: mdl-37105190

RESUMEN

A biomarker in infectiology should ideally be able to identify infectious agents, monitor clinical response and determine the duration of treatment. This article answers the question to what extent C-reactive protein and procalcitonin meet these requirements and reports on the search for further biomarkers - e.g. with the help of "omics"-based technologies and the integration of artificial intelligence.


Asunto(s)
Inteligencia Artificial , Polipéptido alfa Relacionado con Calcitonina , Humanos , Biomarcadores , Proteína C-Reactiva
14.
Pneumologie ; 77(3): 143-157, 2023 Mar.
Artículo en Alemán | MEDLINE | ID: mdl-36918016

RESUMEN

The SARS-CoV-2 pandemic had a tremendous impact on diagnosis and treatment of interstitial lung diseases (ILD). Especially in the early phase of the pandemic, when the delta variant was prevailling, a huge number of viral pneumonias were observed, which worsened pre-existing, triggered de novo occurence or discovery of previously subclincal interstitial lung diseases. The effect of SARS-CoV-2 infection - without or with accompanying viral pneumonia - on the further development of pre-existing ILD as well of new pulmonary inflitrates and consolidiations is difficult to predict and poses a daily challenge to interdisciplinary ILD boards. This position paper of the German Respiratory Society (DGP e.V.) provides answers to the most pressing questions based on current knowledge.


Asunto(s)
COVID-19 , Enfermedades Pulmonares Intersticiales , Neumonía Viral , Humanos , SARS-CoV-2 , Enfermedades Pulmonares Intersticiales/diagnóstico , Enfermedades Pulmonares Intersticiales/terapia , Pulmón , Neumonía Viral/diagnóstico , Neumonía Viral/epidemiología , Neumonía Viral/terapia
15.
Front Immunol ; 13: 818015, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35911713

RESUMEN

Natural killer (NK) cells are important effectors of the innate immune system and participate in the first line of defense against infections and tumors. Prior to being functional, these lymphocytes must be educated or licensed through interactions of their major histocompatibility complex class I molecules with self-specific inhibitory receptors that recognize them. In the absence of such contacts, caused by either the lack of expression of the inhibitory receptors or a very low level of major histocompatibility complex class I (MHC class I) proteins, NK cells are hypo-reactive at baseline (ex vivo). After stimulation (assessed through plate-bound antibodies against activating receptors or culture in the presence of cytokines such as interleukin (IL)-2 or IL-15) however, they can become cytotoxic and produce cytokines. This is particularly the case in transporter associated with antigen processing (TAP)-deficient mice, which we investigated in the present study. Transporter associated with antigen processing transports endogenous peptides from the cytosol to the endoplasmic reticulum, where they are loaded on nascent MHC class I molecules, which then become stable and expressed at the cell surface. Consequently, TAP-KO mice have very low levels of MHC class I expression. We present a study about phenotypic and functional aspects of NK cells in two mouse strains, C57BL/6 wildtype and TAP1-KO in spleen and lung. We observed that in both types of mice, on the same genetic background, the initial pattern of education, conferred to the cells via the inhibitory receptors Ly49C/I and NKG2A, was maintained even after a strong stimulation by the cytokines interleukin-2, interleukin-12, interleukin-15 and interleukin-18. Furthermore, the percentages of activated NK cells expressing Ly49C/I and Ly49I were strongly down-modulated under these conditions. We completed our investigations with phenotypic studies of NK cells from these mice.


Asunto(s)
Presentación de Antígeno , Antígenos de Histocompatibilidad Clase I , Células Asesinas Naturales , Transportador de Casetes de Unión a ATP, Subfamilia B, Miembro 2/genética , Animales , Proteínas de Transporte de Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Subfamilia A de Receptores Similares a Lectina de Células NK/inmunología , Subfamilia A de Receptores Similares a Lectina de Células NK/metabolismo
16.
Int J Mol Sci ; 23(7)2022 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-35408787

RESUMEN

T cell activation plays a central role in supporting and shaping the immune response. The induction of a functional adaptive immune response requires the control of signaling processes downstream of the T cell receptor (TCR). In this regard, protein phosphorylation and dephosphorylation have been extensively studied. In the past decades, further checkpoints of activation have been identified. These are E3 ligases catalyzing the transfer of ubiquitin or ubiquitin-like proteins to protein substrates, as well as specific peptidases to counteract this reaction, such as deubiquitinating enzymes (DUBs). These posttranslational modifications can critically influence protein interactions by targeting proteins for degradation by proteasomes or mediating the complex formation required for active TCR signaling. Thus, the basic aspects of T cell development and differentiation are controlled by defining, e.g., the threshold of activation in positive and negative selection in the thymus. Furthermore, an emerging role of ubiquitination in peripheral T cell tolerance has been described. Changes in the function and abundance of certain E3 ligases or DUBs involved in T cell homeostasis are associated with the development of autoimmune diseases. This review summarizes the current knowledge of E3 enzymes and their target proteins regulating T cell signaling processes and discusses new approaches for therapeutic intervention.


Asunto(s)
Enzimas Desubicuitinizantes , Receptores de Antígenos de Linfocitos T , Transducción de Señal , Ubiquitina-Proteína Ligasas , Enzimas Desubicuitinizantes/metabolismo , Receptores de Antígenos de Linfocitos T/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
17.
Respir Med Case Rep ; 36: 101614, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35251928

RESUMEN

Status asthmaticus is a life-threatening condition with a high mortality rate of up to 10.3% [1].Milger et al. recently described a rapid clinical improvement and a reduction in serum IgE levels in a patient with status asthmaticus who received salvage therapy with omalizumab [2]. This treatment is not approved for status asthmaticus. Therefore, the authors based their dose finding on the recommendations approved by the by the European Medicines Agency for the treatment of severe persistent allergic asthma. For this indication the maximum dose generally does not include an option for patients with a higher body weight and high IgE levels [2].A significant number of patients with persistent severe allergic asthma cannot be treated because there are insufficient data to support the administration of omalizumab above the recommended maximum dose of 600mg every 2 weeks [3]. In contrast, there is a lot of evidence in the existing literature for a very good safety profile for omalizumab [4,5]. OBJECTIVE: Here we report for the first time the successful treatment of a patient with refractory status asthmaticus by salvage therapy with updosed omalizumab adjusted for actual baseline IgE level, body weight and effect.

18.
Clin Microbiol Infect ; 28(8): 1105-1112, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35272014

RESUMEN

OBJECTIVES: In hospital hygiene, it remains unclear to what extent surface contamination might represent a potential reservoir for nosocomial pathogens. This study investigates the effects of different sanitization strategies on the microbial structures and the ecological balance of the environmental microbiome in the clinical setting. METHODS: Three cleaning regimes (disinfectants, detergents, and probiotics) were applied subsequently in nine independent patient rooms at a neurological ward (Charité, Berlin). Weekly sampling procedures included three different environmental sites: floor, door handle, and sink. Characterization of the environmental microbiota and detection of antibiotic resistance genes (ARGs) were performed by 16S rRNA sequencing and multiplex Taq-Man qPCR assays, respectively. RESULTS: Our results showed a displacement of the intrinsic environmental microbiota after probiotic sanitization, which reached statistical significance in the sink samples (median 16S-rRNA copies = 138.3; IQR: 24.38-379.5) when compared to traditional disinfection measures (median 16S rRNA copies = 1343; IQR: 330.9-9479; p < 0.05). This effect was concomitant with a significant increase in the alpha-diversity metrics in both the floor (p < 0.001) and the sink samples (p < 0.01) during the probiotic strategy. We did not observe a sanitization-dependent change in relative pathogen abundance at any tested site, but there was a significant reduction in the total ARG counts in the sink samples during probiotic cleaning (mean ARGs/sample: 0.095 ± 0.067) when compared to the disinfection strategy (mean ARGs/sample: 0.386 ± 0.116; p < 0.01). DISCUSSION: The data presented in this study suggest that probiotic sanitization is an interesting strategy in hospital hygiene management to be further analyzed and validated in randomized clinical studies.


Asunto(s)
Bacterias , Microbiota , Antibacterianos/farmacología , Bacterias/genética , Farmacorresistencia Microbiana/genética , Genes Bacterianos , Hospitales , Humanos , Microbiota/genética , ARN Ribosómico 16S/genética
19.
Cell Immunol ; 371: 104459, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34847408

RESUMEN

Invasive candidiasis is a healthcare-associated fungal infection with a high mortality rate. Neutrophils, the first line of defense during fungal infections, express the immunoregulatory Candida albicans receptors CEACAM1, CEACAM3, and CEACAM6. We analyzed the effects of specific antibodies on C. albicans-induced neutrophil responses. CEACAM6 ligation by 1H7-4B and to some extent CEACAM1 ligation by B3-17, but not CEACAM3 ligation by 308/3-3, resulted in the immediate release of stored CXCL8 and altered transcriptional responses of the C. albicans-stimulated neutrophils. Integrated network analyses and dynamic simulations of signaling cascades predicted alterations in apoptosis and cytokine secretion. We verified that CEACAM6 ligation enhanced Candida-induced neutrophil apoptosis and increased long-term IL-1ß/IL-6 release in responses to C. albicans. CEACAM3 ligation, but not CEACAM1 ligation, increased the long-term release of pro-inflammatory IL-1ß/IL-6. Taken together, we demonstrated for the first time that ligation of CEACAM receptors differentially affects the regulation of C. albicans-induced immune functions in human neutrophils.


Asunto(s)
Antígenos CD/inmunología , Candida albicans/inmunología , Antígeno Carcinoembrionario/inmunología , Moléculas de Adhesión Celular/inmunología , Neutrófilos/inmunología , Anticuerpos Monoclonales/inmunología , Apoptosis/inmunología , Candidiasis Invasiva/mortalidad , Candidiasis Invasiva/patología , Citocinas/inmunología , Femenino , Proteínas Ligadas a GPI/inmunología , Humanos , Inmunomodulación/inmunología , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Masculino
20.
J Cachexia Sarcopenia Muscle ; 12(6): 1653-1668, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34472725

RESUMEN

BACKGROUND: Septic cardiomyopathy worsens the prognosis of critically ill patients. Clinical data suggest that interleukin-1ß (IL-1ß), activated by the NLRP3 inflammasome, compromises cardiac function. Whether or not deleting Nlrp3 would prevent cardiac atrophy and improve diastolic cardiac function in sepsis was unclear. Here, we investigated the role of NLRP3/IL-1ß in sepsis-induced cardiomyopathy and cardiac atrophy. METHODS: Male Nlrp3 knockout (KO) and wild-type (WT) mice were exposed to polymicrobial sepsis by caecal ligation and puncture (CLP) surgery (KO, n = 27; WT, n = 33) to induce septic cardiomyopathy. Sham-treated mice served as controls (KO, n = 11; WT, n = 16). Heart weights and morphology, echocardiography and analyses of gene and protein expression were used to evaluate septic cardiomyopathy and cardiac atrophy. IL-1ß effects on primary and immortalized cardiomyocytes were investigated by morphological and molecular analyses. IonOptix and real-time deformability cytometry (RT-DC) analysis were used to investigate functional and mechanical effects of IL-1ß on cardiomyocytes. RESULTS: Heart morphology and echocardiography revealed preserved systolic (stroke volume: WT sham vs. WT CLP: 33.1 ± 7.2 µL vs. 24.6 ± 8.7 µL, P < 0.05; KO sham vs. KO CLP: 28.3 ± 8.1 µL vs. 29.9 ± 9.9 µL, n.s.; P < 0.05 vs. WT CLP) and diastolic (peak E wave velocity: WT sham vs. WT CLP: 750 ± 132 vs. 522 ± 200 mm/s, P < 0.001; KO sham vs. KO CLP: 709 ± 152 vs. 639 ± 165 mm/s, n.s.; P < 0.05 vs. WT CLP) cardiac function and attenuated cardiac (heart weight-tibia length ratio: WT CLP vs. WT sham: -26.6%, P < 0.05; KO CLP vs. KO sham: -3.3%, n.s.; P < 0.05 vs. WT CLP) and cardiomyocyte atrophy in KO mice during sepsis. IonOptix measurements showed that IL-1ß decreased contractility (cell shortening: IL-1ß: -15.4 ± 2.3%, P < 0.001 vs. vehicle, IL-1RA: -6.1 ± 3.3%, P < 0.05 vs. IL-1ß) and relaxation of adult rat ventricular cardiomyocytes (time-to-50% relengthening: IL-1ß: 2071 ± 225 ms, P < 0.001 vs. vehicle, IL-1RA: 564 ± 247 ms, P < 0.001 vs. IL-1ß), which was attenuated by an IL-1 receptor antagonist (IL-1RA). RT-DC analysis indicated that IL-1ß reduced cardiomyocyte size (P < 0.001) and deformation (P < 0.05). RNA sequencing showed that genes involved in NF-κB signalling, autophagy and lysosomal protein degradation were enriched in hearts of septic WT but not in septic KO mice. Western blotting and qPCR disclosed that IL-1ß activated NF-κB and its target genes, caused atrophy and decreased myosin protein in myocytes, which was accompanied by an increased autophagy gene expression. These effects were attenuated by IL-1RA. CONCLUSIONS: IL-1ß causes atrophy, impairs contractility and relaxation and decreases deformation of cardiomyocytes. Because NLRP3/IL-1ß pathway inhibition attenuates cardiac atrophy and cardiomyopathy in sepsis, it could be useful to prevent septic cardiomyopathy.


Asunto(s)
Cardiomiopatías , Sepsis , Animales , Cardiomiopatías/etiología , Humanos , Inflamasomas , Interleucina-1beta , Masculino , Ratones , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Ratas , Sepsis/complicaciones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...