Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Trends Cogn Sci ; 28(7): 590-592, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38705785

RESUMEN

Humans and other primates skillfully navigate the complex cognitive interplay of cooperative behaviors. However, the neural resources we rely on to do so are poorly understood. Franch et al. found that neuronal activity in a visual-frontal domain general cortical network is shaped during the training of a cooperative behavior to highlight relevant sensory inputs.


Asunto(s)
Encéfalo , Conducta Cooperativa , Humanos , Encéfalo/fisiología , Animales , Red Nerviosa/fisiología
2.
Annu Rev Neurosci ; 46: 381-401, 2023 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-37428602

RESUMEN

Primates have evolved diverse cognitive capabilities to navigate their complex social world. To understand how the brain implements critical social cognitive abilities, we describe functional specialization in the domains of face processing, social interaction understanding, and mental state attribution. Systems for face processing are specialized from the level of single cells to populations of neurons within brain regions to hierarchically organized networks that extract and represent abstract social information. Such functional specialization is not confined to the sensorimotor periphery but appears to be a pervasive theme of primate brain organization all the way to the apex regions of cortical hierarchies. Circuits processing social information are juxtaposed with parallel systems involved in processing nonsocial information, suggesting common computations applied to different domains. The emerging picture of the neural basis of social cognition is a set of distinct but interacting subnetworks involved in component processes such as face perception and social reasoning, traversing large parts of the primate brain.


Asunto(s)
Encéfalo , Cognición Social , Animales , Encéfalo/fisiología , Primates/fisiología , Percepción Social , Cognición/fisiología
3.
Science ; 374(6566): 397-398, 2021 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-34672744

RESUMEN

Social intelligence requires the study of both groups of brains and the individual brain.


Asunto(s)
Neurociencias , Animales
4.
Cereb Cortex ; 27(6): 3346-3359, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28369290

RESUMEN

We compare several major white-matter tracts in human and macaque occipital lobe using diffusion magnetic resonance imaging. The comparison suggests similarities but also significant differences in the tracts. There are several apparently homologous tracts in the 2 species, including the vertical occipital fasciculus (VOF), optic radiation, forceps major, and inferior longitudinal fasciculus (ILF). There is one large human tract, the inferior fronto-occipital fasciculus, with no corresponding fasciculus in macaque. We could identify the macaque VOF (mVOF), which has been little studied. Its position is consistent with classical invasive anatomical studies by Wernicke. VOF homology is supported by similarity of the endpoints in V3A and ventral V4 across species. The mVOF fibers intertwine with the dorsal segment of the ILF, but the human VOF appears to be lateral to the ILF. These similarities and differences between the occipital lobe tracts will be useful in establishing which circuitry in the macaque can serve as an accurate model for human visual cortex.


Asunto(s)
Fibras Nerviosas Mielínicas/fisiología , Vías Nerviosas/fisiología , Lóbulo Occipital/diagnóstico por imagen , Sustancia Blanca/diagnóstico por imagen , Animales , Mapeo Encefálico , Cuerpo Calloso/diagnóstico por imagen , Bases de Datos Factuales/estadística & datos numéricos , Imagen de Difusión Tensora , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Macaca mulatta , Masculino , Vías Nerviosas/diagnóstico por imagen , Lóbulo Occipital/anatomía & histología , Especificidad de la Especie
5.
Cereb Cortex ; 26(3): 950-966, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25405945

RESUMEN

Social interactions make up to a large extent the prime material of episodic memories. We therefore asked how social signals are coded by neurons in the hippocampus. Human hippocampus is home to neurons representing familiar individuals in an abstract and invariant manner ( Quian Quiroga et al. 2009). In contradistinction, activity of rat hippocampal cells is only weakly altered by the presence of other rats ( von Heimendahl et al. 2012; Zynyuk et al. 2012). We probed the activity of monkey hippocampal neurons to faces and voices of familiar and unfamiliar individuals (monkeys and humans). Thirty-one percent of neurons recorded without prescreening responded to faces or to voices. Yet responses to faces were more informative about individuals than responses to voices and neuronal responses to facial and vocal identities were not correlated, indicating that in our sample identity information was not conveyed in an invariant manner like in human neurons. Overall, responses displayed by monkey hippocampal neurons were similar to the ones of neurons recorded simultaneously in inferotemporal cortex, whose role in face perception is established. These results demonstrate that the monkey hippocampus participates in the read-out of social information contrary to the rat hippocampus, but possibly lack an explicit conceptual coding of as found in humans.


Asunto(s)
Percepción Auditiva/fisiología , Hipocampo/fisiología , Neuronas/fisiología , Patrones de Reconocimiento Fisiológico/fisiología , Lóbulo Temporal/fisiología , Percepción Visual/fisiología , Estimulación Acústica , Potenciales de Acción , Comunicación Animal , Animales , Cara , Macaca mulatta , Masculino , Microelectrodos , Pruebas Neuropsicológicas , Estimulación Luminosa , Reconocimiento en Psicología/fisiología , Percepción Social
6.
Proc Natl Acad Sci U S A ; 108(4): 1735-40, 2011 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-21220340

RESUMEN

Recognition of a particular individual occurs when we reactivate links between current perceptual inputs and the previously formed representation of that person. This recognition can be achieved by identifying, separately or simultaneously, distinct elements such as the face, silhouette, or voice as belonging to one individual. In humans, those different cues are linked into one complex conceptual representation of individual identity. Here we tested whether rhesus macaques (Macaca mulatta) also have a cognitive representation of identity by evaluating whether they exhibit cross-modal individual recognition. Further, we assessed individual recognition of familiar conspecifics and familiar humans. In a free preferential looking time paradigm, we found that, for both species, monkeys spontaneously matched the faces of known individuals to their voices. This finding demonstrates that rhesus macaques possess a cross-modal cognitive representation of individuals that extends from conspecifics to humans, revealing the adaptive potential of identity recognition for individuals of socioecological relevance.


Asunto(s)
Macaca mulatta/fisiología , Macaca mulatta/psicología , Reconocimiento Visual de Modelos/fisiología , Vocalización Animal/fisiología , Algoritmos , Animales , Aprendizaje Discriminativo/fisiología , Cara , Expresión Facial , Femenino , Percepción de Forma/fisiología , Humanos , Masculino , Modelos Psicológicos , Tiempo de Reacción/fisiología , Reconocimiento en Psicología/fisiología , Especificidad de la Especie , Percepción Visual/fisiología , Voz
7.
J Neurosci Methods ; 169(2): 302-22, 2008 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-18187201

RESUMEN

Cortical neurons are subject to sustained and irregular synaptic activity which causes important fluctuations of the membrane potential (V(m)). We review here different methods to characterize this activity and its impact on spike generation. The simplified, fluctuating point-conductance model of synaptic activity provides the starting point of a variety of methods for the analysis of intracellular V(m) recordings. In this model, the synaptic excitatory and inhibitory conductances are described by Gaussian-distributed stochastic variables, or "colored conductance noise". The matching of experimentally recorded V(m) distributions to an invertible theoretical expression derived from the model allows the extraction of parameters characterizing the synaptic conductance distributions. This analysis can be complemented by the matching of experimental V(m) power spectral densities (PSDs) to a theoretical template, even though the unexpected scaling properties of experimental PSDs limit the precision of this latter approach. Building on this stochastic characterization of synaptic activity, we also propose methods to qualitatively and quantitatively evaluate spike-triggered averages of synaptic time-courses preceding spikes. This analysis points to an essential role for synaptic conductance variance in determining spike times. The presented methods are evaluated using controlled conductance injection in cortical neurons in vitro with the dynamic-clamp technique. We review their applications to the analysis of in vivo intracellular recordings in cat association cortex, which suggest a predominant role for inhibition in determining both sub- and supra-threshold dynamics of cortical neurons embedded in active networks.


Asunto(s)
Corteza Cerebral/fisiología , Conducción Nerviosa/fisiología , Neuronas/fisiología , Sinapsis/fisiología , Algoritmos , Animales , Corteza Cerebral/citología , Simulación por Computador , Interpretación Estadística de Datos , Electrofisiología , Hurones , Técnicas In Vitro , Potenciales de la Membrana/fisiología , Microelectrodos , Modelos Neurológicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...