Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Clin Transl Immunology ; 11(10): e1422, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36275878

RESUMEN

Objective: Influenza A, B and C viruses (IAV, IBV and ICV, respectively) circulate globally, infecting humans and causing widespread morbidity and mortality. Here, we investigate the T cell response towards an immunodominant IAV epitope, NP265-273, and its IBV and ICV homologues, presented by HLA-A*03:01 molecule expressed in ~ 4% of the global population (~ 300 million people). Methods: We assessed the magnitude (tetramer staining) and quality of the CD8+ T cell response (intracellular cytokine staining) towards NP265-IAV and described the T cell receptor (TCR) repertoire used to recognise this immunodominant epitope. We next assessed the immunogenicity of NP265-IAV homologue peptides from IBV and ICV and the ability of CD8+ T cells to cross-react towards these homologous peptides. Furthermore, we determined the structures of NP265-IAV and NP323-IBV peptides in complex with HLA-A*03:01 by X-ray crystallography. Results: Our study provides a detailed characterisation of the CD8+ T cell response towards NP265-IAV and its IBV and ICV homologues. The data revealed a diverse repertoire for NP265-IAV that is associated with superior anti-viral protection. Evidence of cross-reactivity between the three different influenza virus strain-derived epitopes was observed, indicating the discovery of a potential vaccination target that is broad enough to cover all three influenza strains. Conclusion: We show that while there is a potential to cross-protect against distinct influenza virus lineages, the T cell response was stronger against the IAV peptide than IBV or ICV, which is an important consideration when choosing targets for future vaccine design.

2.
Immunity ; 54(5): 1055-1065.e5, 2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33945786

RESUMEN

Efforts are being made worldwide to understand the immune response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for the coronavirus disease 2019 (COVID-19) pandemic, including the impact of T cell immunity and cross-recognition with seasonal coronaviruses. Screening of SARS-CoV-2 peptide pools revealed that the nucleocapsid (N) protein induced an immunodominant response in HLA-B7+ COVID-19-recovered individuals that was also detectable in unexposed donors. A single N-encoded epitope that was highly conserved across circulating coronaviruses drove this immunodominant response. In vitro peptide stimulation and crystal structure analyses revealed T cell-mediated cross-reactivity toward circulating OC43 and HKU-1 betacoronaviruses but not 229E or NL63 alphacoronaviruses because of different peptide conformations. T cell receptor (TCR) sequencing indicated that cross-reactivity was driven by private TCR repertoires with a bias for TRBV27 and a long CDR3ß loop. Our findings demonstrate the basis of selective T cell cross-reactivity for an immunodominant SARS-CoV-2 epitope and its homologs from seasonal coronaviruses, suggesting long-lasting protective immunity.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , COVID-19/inmunología , Proteínas de la Nucleocápside de Coronavirus/inmunología , Epítopos Inmunodominantes/inmunología , SARS-CoV-2/inmunología , Secuencia de Aminoácidos , Coronavirus/clasificación , Coronavirus/inmunología , Proteínas de la Nucleocápside de Coronavirus/química , Reacciones Cruzadas , Epítopos de Linfocito T/química , Epítopos de Linfocito T/inmunología , Antígeno HLA-B7/química , Antígeno HLA-B7/genética , Antígeno HLA-B7/inmunología , Humanos , Epítopos Inmunodominantes/química , Memoria Inmunológica , Modelos Moleculares , Péptidos/química , Péptidos/inmunología , Receptores de Antígenos de Linfocitos T/química , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/inmunología
3.
iScience ; 24(2): 102096, 2021 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-33521593

RESUMEN

CD8+ T cells are crucial for anti-viral immunity; however, understanding T cell responses requires the identification of epitopes presented by human leukocyte antigens (HLA). To date, few SARS-CoV-2-specific CD8+ T cell epitopes have been described. Internal viral proteins are typically more conserved than surface proteins and are often the target of CD8+ T cells. Therefore, we have characterized eight peptides derived from the internal SARS-CoV-2 nucleocapsid protein predicted to bind HLA-A∗02:01, the most common HLA molecule in the global population. We determined not all peptides could form a complex with HLA-A∗02:01, and the six crystal structures determined revealed that some peptides adopted a mobile conformation. We therefore provide a molecular understanding of SARS-CoV-2 CD8+ T cell epitopes. Furthermore, we show that there is limited pre-existing CD8+ T cell response toward these epitopes in unexposed individuals. Together, these data show that SARS-CoV-2 nucleocapsid might not contain potent epitopes restricted to HLA-A∗02:01.

4.
Int J Mol Sci ; 22(1)2020 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-33374787

RESUMEN

As a major arm of the cellular immune response, CD4+ T cells are important in the control and clearance of infections. Primarily described as helpers, CD4+ T cells play an integral role in the development and activation of B cells and CD8+ T cells. CD4+ T cells are incredibly heterogeneous, and can be divided into six main lineages based on distinct profiles, namely T helper 1, 2, 17 and 22 (Th1, Th2, Th17, Th22), regulatory T cells (Treg) and T follicular helper cells (Tfh). Recent advances in structural biology have allowed for a detailed characterisation of the molecular mechanisms that drive CD4+ T cell recognition. In this review, we discuss the defining features of the main human CD4+ T cell lineages and their role in immunity, as well as their structural characteristics underlying their detection of pathogens.


Asunto(s)
Receptores de Antígenos de Linfocitos T/química , Linfocitos T Colaboradores-Inductores/inmunología , Linfocitos T Reguladores/inmunología , Animales , Reacciones Antígeno-Anticuerpo , Humanos , Receptores de Antígenos de Linfocitos T/inmunología
5.
Int J Mol Sci ; 21(19)2020 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-32992915

RESUMEN

The interaction between T cell receptor (TCR) and peptide (p)-Human Leukocyte Antigen (HLA) complexes is the critical first step in determining T cell responses. X-ray crystallographic studies of pHLA in TCR-bound and free states provide a structural perspective that can help understand T cell activation. These structures represent a static "snapshot", yet the nature of pHLAs and their interactions with TCRs are highly dynamic. This has been demonstrated for HLA class I molecules with in silico techniques showing that some interactions, thought to stabilise pHLA-I, are only transient and prone to high flexibility. Here, we investigated the dynamics of HLA class II molecules by focusing on three allomorphs (HLA-DR1, -DR11 and -DR15) that are able to present the same epitope and activate CD4+ T cells. A single TCR (F24) has been shown to recognise all three HLA-DR molecules, albeit with different affinities. Using molecular dynamics and crystallographic ensemble refinement, we investigate the molecular basis of these different affinities and uncover hidden roles for HLA polymorphic residues. These polymorphisms were responsible for the widening of the antigen binding cleft and disruption of pHLA-TCR interactions, underpinning the hierarchy of F24 TCR binding affinity, and ultimately T cell activation. We expanded this approach to all available pHLA-DR structures and discovered that all HLA-DR molecules were inherently rigid. Together with in vitro protein stability and peptide affinity measurements, our results suggest that HLA-DR1 possesses inherently high protein stability, and low HLA-DM susceptibility.


Asunto(s)
Antígenos/química , Antígenos HLA-DR/química , Receptores de Antígenos de Linfocitos T/química , Antígenos/inmunología , Linfocitos T CD4-Positivos/química , Linfocitos T CD4-Positivos/inmunología , Cristalografía por Rayos X , Células HEK293 , Antígenos HLA-DR/inmunología , Humanos , Receptores de Antígenos de Linfocitos T/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...