Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Intervalo de año de publicación
1.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-467274

RESUMEN

The impact of SARS-CoV-2 on the olfactory pathway was studied over several time points using Syrian golden hamsters. We found an incomplete recovery of the olfactory sensory neurons, prolonged activation of glial cells in the olfactory bulb, and a decrease in the density of dendritic spines within the hippocampus. These data may be useful for elucidating the mechanism underlying long-lasting olfactory dysfunction and cognitive impairment as a post-acute COVID-19 syndrome.

2.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-359836

RESUMEN

We have previously reported that the SARS-CoV-2 neutralizing antibody, STI-2020, potently inhibits cytopathic effects of infection by genetically diverse clinical SARS-CoV-2 pandemic isolates in vitro, and has demonstrated efficacy in a hamster model of COVID-19 when administered by the intravenous route immediately following infection. We now have extended our in vivo studies of STI-2020 to include disease treatment efficacy, profiling of biodistribution of STI-2020 in mice when antibody is delivered intranasally (IN) or intravenously (IV), as well as pharmacokinetics in mice following IN antibody administration. Importantly, SARS-CoV-2-infected hamsters were treated with STI-2020 using these routes, and treatment effects on severity and duration of COVID-19-like disease in this model were evaluated. In SARS-CoV-2 infected hamsters, treatment with STI-2020 12 hours post-infection using the IN route led to a decrease in severity of clinical disease signs and a more robust recovery during 9 days of infection as compared to animals treated with an isotype control antibody. Treatment via the IV route using the same dose and timing regimen resulted in a decrease in the average number of consecutive days that infected animals experienced weight loss, shortening the duration of disease and allowing recovery to begin more rapidly in STI-2020 treated animals. Following IN administration in mice, STI-2020 was detected within 10 minutes in both lung tissue and lung lavage. The half-life of STI-2020 in lung tissue is approximately 25 hours. We are currently investigating the minimum effective dose of IN-delivered STI-2020 in the hamster model as well as establishing the relative benefit of delivering neutralizing antibodies by both IV and IN routes.

3.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-316174

RESUMEN

SARS-CoV-2 neutralizing antibodies represent an important component of the ongoing search for effective treatment of and protection against COVID-19. We report here on the use of a naive phage display antibody library to identify a panel of fully human SARS-CoV-2 neutralizing antibodies. Following functional profiling in vitro against an early pandemic isolate as well as a recently emerged isolate bearing the D614G Spike mutation, the clinical candidate antibody, STI-1499, and the affinity-engineered variant, STI-2020, were evaluated for in vivo efficacy in the Syrian golden hamster model of COVID-19. Both antibodies demonstrated potent protection against the pathogenic effects of the disease and a dose-dependent reduction of virus load in the lungs, reaching undetectable levels following a single dose of 500 micrograms of STI-2020. These data support continued development of these antibodies as therapeutics against COVID-19 and future use of this approach to address novel emerging pandemic disease threats.

4.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-238394

RESUMEN

The coronavirus disease 2019 (COVID-19) pandemic has created an urgent need for therapeutics that inhibit the SARS-CoV-2 virus and suppress the fulminant inflammation characteristic of advanced illness. Here, we describe the anti-COVID-19 potential of PTC299, an orally available compound that is a potent inhibitor of dihydroorotate dehydrogenase (DHODH), the rate-limiting enzyme of the de novo pyrimidine biosynthesis pathway. In tissue culture, PTC299 manifests robust, dose-dependent, and DHODH-dependent inhibition of SARS CoV-2 replication (EC50 range, 2.0 to 31.6 nM) with a selectivity index >3,800. PTC299 also blocked replication of other RNA viruses, including Ebola virus. Consistent with known DHODH requirements for immunomodulatory cytokine production, PTC299 inhibited the production of interleukin (IL)-6, IL-17A (also called IL-17), IL-17F, and vascular endothelial growth factor (VEGF) in tissue culture models. The combination of anti-SARS-CoV-2 activity, cytokine inhibitory activity, and previously established favorable pharmacokinetic and human safety profiles render PTC299 a promising therapeutic for COVID-19.

5.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-20146043

RESUMEN

We investigated the ability of Luminore CopperTouch copper and copper-nickel surfaces to inactivate filoviruses and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). For this purpose, we compared viral titers in Vero cells from viral droplets exposed to copper surfaces for 30 min. The copper and copper-nickel surfaces inactivated 99.9% of the viral titer of both Ebola and Marburg viruses. The copper surfaces also inactivated 99% of SARS-CoV-2 titers in 2 hours to close to the limit of detection. These data add Ebolavirus, Marburgvirus, and SARS-CoV-2 (COVID-19) to the list of pathogens that can be inactivated by exposure to copper ions, validating Luminore CopperTouch technology (currently the only Environmental Protection Agency-registered cold spray antimicrobial surface technology) as an efficacious, cost-friendly tool to improve infection control in hospitals, long-term care facilities, schools, hotels, buses, trains, airports, and other highly trafficked areas.

6.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-150243

RESUMEN

Airborne transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) via air-conditioning systems poses a significant threat for the continued escalation of the current coronavirus disease (COVID-19) pandemic. Considering that SARS-CoV-2 cannot tolerate temperatures above 70 {degrees}C, here we designed and fabricated efficient air disinfection systems based on heated nickel (Ni) foam to catch and kill SARS-CoV-2. Virus test results revealed that 99.8% of the aerosolized SARS-CoV-2 was caught and killed by a single pass through a Ni-foam-based filter when heated up to 200 {degrees}C. Additionally, the same filter was also used to catch and kill 99.9% of Bacillus anthracis, an airborne spore. This study paves the way for preventing transmission of SARS-CoV-2 and other highly infectious airborne agents in closed environments. One Sentence SummaryHeated Ni-foam filters are capable of effectively catching and killing airborne SARS-CoV-2 and Bacillus anthracis spores.

7.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-082701

RESUMEN

The coronavirus known as SARS-CoV-2, which causes COVID-19 disease, is presently responsible for a global pandemic wherein more than 3.5 million people have been infected and more than 250,000 killed to-date. There is currently no vaccine for COVID-19, leaving governments and public health agencies with little defense against the virus aside from advising or enforcing best practices for virus transmission prevention, which include hand-washing, physical distancing, use of face covers, and use of effective disinfectants. In this study, a novel iodine complex called CupriDyne(R) was assessed for its ability to inactivate SARS-CoV-2. CupriDyne was shown to be effective in inactivating the virus in a time-dependent manner, reducing virus titers by 99% (2 logs) after 30 minutes, and reducing virus titers to below the detection limit after 60 minutes. The novel iodine complex tested herein offers a safe and gentle alternative to conventional disinfectants for use on indoor and outdoor surfaces.

8.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-028589

RESUMEN

The ongoing COVID-19 pandemic continues to pose a major public health burden around the world. The novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has infected over one million people worldwide as of April, 2020, and has led to the deaths of nearly 300,000 people. No approved vaccines or treatments in the USA currently exist for COVID-19, so there is an urgent need to develop effective countermeasures. The IMPDH inhibitor merimepodib (MMPD) is an investigational antiviral drug that acts as a noncompetitive inhibitor of IMPDH. It has been demonstrated to suppress replication of a variety of emerging RNA viruses. We report here that MMPD suppresses SARS-CoV-2 replication in vitro. After overnight pretreatment of Vero cells with 10 M of MMPD, viral titers were reduced by 4 logs of magnitude, while pretreatment for 4 hours resulted in a 3-log drop. The effect is dose-dependent, and concentrations as low as 3.3 M significantly reduced viral titers when the cells were pretreated prior to infection. The results of this study provide evidence that MMPD may be a viable treatment option for COVID-19.

9.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-022764

RESUMEN

The historical outbreak of COVID-19 disease not only constitutes a global public health crisis, but also has a devastating social and economic impact. The disease is caused by a newly identified coronavirus, Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2). There is an urgent need to identify antivirals to curtail the COVID-19 pandemic. Herein, we report the remarkable sensitivity of SARS-CoV-2 to recombinant human interferons and {beta} (IFN/{beta}). Treatment with IFN- or IFN-{beta} at a concentration of 50 international units (IU) per milliliter drastically reduce viral titers by 3.4 log or 4.5 log, respectively in Vero cells. The EC50 of IFN- and IFN-{beta} treatment is 1.35 IU/ml and 0.76 IU/ml, respectively, in Vero cells. These results suggested that SARS-CoV-2 is more sensitive to many other human pathogenic viruses, including the SARS-CoV. Overall, our results demonstrate the potent efficacy of human Type I IFN in suppressing SARS-CoV-2 replication, a finding which could inform future treatment options for COVID-19.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...