Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 13(24)2020 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-33321995

RESUMEN

Analysis of surface properties of halloysite-carbon nanocomposites and non-modified halloysite was carried out with surface sensitive X-ray photoelectron spectroscopy (XPS) and inverse gas chromatography (IGC). The XPS spectra were measured in a wide range of the electron binding energy (survey spectra) and in the region of C 1s photoelectron peak (narrow scans). The IGC results show the changes of halloysite surface from basic for pure halloysite to acidic for carbon-halloysite nanocomposites. Halloysite-carbon nanocomposites were used as adsorbents of paracetamol from an aqueous solution. The adsorption mechanism was found to follow the pseudo-second-order and intra-particle diffusion models. The Langmuir multi-center adsorption model described well the obtained experimental data. The presence of carbon increased significantly the adsorption ability of halloysite-carbon nanocomposites for paracetamol in comparison to the non-modified halloysite.

2.
Materials (Basel) ; 13(15)2020 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-32722297

RESUMEN

The adsorption of phenol, 2-, 3-, 4-chlorophenol, 2-, 4-dichlorophenol and 2-, 4-, 6-trichloro-phenol on halloysite nanotubes modified with hexadecyltrimethylammonium bromide (HDTMA/halloysite nanocomposite) was investigated in this work by inverse liquid chromatography methods. Morphological and structural changes of the HDTMA/halloysite nanocomposite were characterized by scanning and transmission electron microscopy (SEM, TEM), Fourier-transform infrared spectrometry (FT-IR) and the low-temperature nitrogen adsorption method. Specific surface energy heterogeneity profiles and acid base properties of halloysite and HDTMA/halloysite nanocomposite have been determined with the inverse gas chromatography method. Inverse liquid chromatography methods: the Peak Division and the Breakthrough Curves Methods were used in adsorption experiments to determine adsorption parameters. The obtained experimental adsorption data were well represented by the Langmuir multi-center adsorption model.

3.
Materials (Basel) ; 12(22)2019 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-31739511

RESUMEN

The adsorption of ketoprofen, naproxen, and diclofenac (non-steroidal anti-inflammatory drugs, NSAIDs) on halloysite/carbon nanocomposites and non-modified halloysite were investigated in this work. Halloysite/carbon nanocomposites were obtained through liquid phase impregnation and carbonization using halloysite as the template and saccharose as the carbon precursor. Scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier-transform infrared spectrometry (FT-IR), and low-temperature nitrogen adsorption method were employed to study the morphological and structural changes of the halloysite/carbon nanocomposites. The effects of contact time, initial concentration of adsorbates, pH of solution, and mass of adsorbent on the adsorption were studied. Adsorption mechanism was found to fit pseudo-second-order and intra-particle diffusion models. The obtained experimental adsorption data were well represented by the Langmuir multi-center adsorption model. Adsorption ability of halloysite/carbon nanocomposites was much higher for all the studied NSAIDs in comparison to non-modified halloysite. Optimized chemical structures of ketoprofen, naproxen, and diclofenac obtained by Density Functional Theory (DFT) calculation showed that charge distributions of these adsorbate molecules and their ions can be helpful to explain the details of adsorption mechanism of NSAIDs on halloysite/carbon nanocomposites.

4.
J AOAC Int ; 100(6): 1715-1726, 2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-28707615

RESUMEN

Chloro derivatives of aniline are commonly used in the production of dyes, pharmaceuticals, and agricultural agents. They are toxic compounds with a large accumulation ability and low natural biodegradability. Halloysite is known as an efficient adsorbent of toxic compounds, such as phenols or herbicides, from wastewater. Inverse LC was applied to measure the adsorption of aniline and 2-chloroaniline (2-CA), 3-chloroaniline (3-CA), and 4-chloroaniline (4-CA) on halloysite adsorbents. A peak division (PD) method was used to determine a Langmuir equation in accordance with the adsorption measurement results. The values of adsorption equilibrium constants and enthalpy were determined and compared by breakthrough curve and PD methods. The physical sense of the calculated adsorption enthalpy values was checked by applying Boudart's entropy criteria. Of note, adsorption enthalpy values for halloysite adsorbents decreased in the following order: aniline > 4-CA > 2-CA > 3-CA.


Asunto(s)
Compuestos de Anilina/química , Cromatografía Liquida/métodos , Adsorción , Silicatos de Aluminio/química , Cromatografía Liquida/instrumentación , Arcilla
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA