Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-35142206

RESUMEN

There is an increasing interest in animating materials to develop dynamic surfaces. These dynamic surfaces can be utilized for advanced applications, including switchable wetting, friction, and lubrication. Dynamic surfaces can also improve existing technologies, for example, by integrating self-cleaning surfaces on solar cells. In this Spotlight on Applications, we describe our most recent advances in liquid crystal polymer network (LCN) dynamic surfaces, focusing on substrate-based topographies and dynamic porous networks. We discuss our latest insights in the mechanisms of deformation with the "free volume" principle. We illustrate the scope of LCN technology through various examples of photo-/electropatterning, free-volume channeling, oscillating/programmable network distortion, and porous LCNs. Finally, we close by discussing prominent applications of LCNs and their outlook.

2.
Chem Sci ; 11(40): 11024-11029, 2020 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-34123192

RESUMEN

Catalysts are conventionally designed with a focus on enthalpic effects, manipulating the Arrhenius activation energy. This approach ignores the possibility of designing materials to control the entropic factors that determine the pre-exponential factor. Here we investigate a new method of designing supported Pt catalysts with varying degrees of molecular confinement at the active site. Combining these with fast and precise online measurements, we analyse the kinetics of a model reaction, the platinum-catalysed hydrolysis of ammonia borane. We control the environment around the Pt particles by erecting organophosphonic acid barriers of different heights and at different distances. This is done by first coating the particles with organothiols, then coating the surface with organophosphonic acids, and finally removing the thiols. The result is a set of catalysts with well-defined "empty areas" surrounding the active sites. Generating Arrhenius plots with >300 points each, we then compare the effects of each confinement scenario. We show experimentally that confining the reaction influences mainly the entropy part of the enthalpy/entropy trade-off, leaving the enthalpy unchanged. Furthermore, we find this entropy contribution is only relevant at very small distances (<3 Å for ammonia borane), where the "empty space" is of a similar size to the reactant molecule. This suggests that confinement effects observed over larger distances must be enthalpic in nature.

3.
Angew Chem Int Ed Engl ; 58(48): 17273-17276, 2019 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-31536672

RESUMEN

We present a new device for quantifying gases or gas mixtures based on the simple principle of bubble counting. With this device, we can follow reaction kinetics down to volume step sizes of 8-12 µL. This enables the accurate determination of both time and size of these gas quanta, giving a very detailed kinetic analysis. We demonstrate this method and device using ammonia borane hydrolysis as a model reaction, obtaining Arrhenius plots with over 300 data points from a single experiment. Our device not only saves time and avoids frustration, but also offers more insight into reaction kinetics and mechanistic studies. Moreover, its simplicity and low cost open opportunities for many lab applications.

4.
J Biotechnol ; 291: 52-60, 2019 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-30550957

RESUMEN

In this study, two stereocomplementary ω-transaminases from Arthrobacter sp. (AsR-ωTA) and Chromobacterium violaceum (Cv-ωTA) were immobilized via iron cation affinity binding onto polymer-coated controlled porosity glass beads (EziG™). The immobilization procedure was studied with different types of carrier materials and immobilization buffers of varying compositions, concentrations, pHs and cofactor (PLP) concentrations. Notably, concentrations of PLP above 0.1 mM were correlated with a dramatic decrease of the immobilization yield. The highest catalytic activity, along with quantitative immobilization, was obtained in MOPS buffer (100 mM, pH 8.0, PLP 0.1 mM, incubation time 2 h). Leaching of the immobilized enzyme was not observed within 3 days of incubation. EziG-immobilized AsR-ωTA and Cv-ωTA retained elevated activity when tested for the kinetic resolution of rac-α-methylbenzylamine (rac-α-MBA) in single batch experiments. Recycling studies demonstrated that immobilized EziG3-AsR-ωTA could be recycled for at least 16 consecutive cycles (15 min per cycle) and always affording quantitative conversion (TON ca. 14,400). Finally, the kinetic resolution of rac-α-MBA with EziG3-AsR-ωTA was tested in a continuous flow packed-bed reactor (157 µL reactor volume), which produced more than 5 g of (S)-α-MBA (>49% conversion, >99% ee) in 96 h with no detectable loss of catalytic activity. The calculated TON was more than 110,000 along with a space-time yield of 335 g L-1 h-1.


Asunto(s)
Enzimas Inmovilizadas/química , Fenetilaminas/química , Transaminasas/química , Arthrobacter/enzimología , Biocatálisis , Chromobacterium/enzimología , Vidrio/química , Hierro/química , Polímeros/química , Porosidad
5.
ChemCatChem ; 10(10): 2119-2124, 2018 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-29937944

RESUMEN

We consider the factors that govern the activity of bifunctional catalysts comprised of active particles supported on active surfaces. Such catalysts are interesting because the adsorption and diffusion steps, which are often discounted in "conventional" catalytic scenarios, play a key role here. We present an intuitive model, the so-called "active doughnut" concept, defining an active catalytic region around the supported particles. This simple model explains the role of adsorption and diffusion steps in cascade catalytic cycles for active particles supported on active surfaces. The concept has two important practical implications. First, the reaction rate is no longer proportional to the number of active sites, but rather to the number of "communicative" active sites-those available to the reaction intermediates during their respective lifetimes. Second, it generates an important testable prediction concerning the dependence of the total reaction rate on the particle size. With these tools at hand, we examine six experimental examples of catalytic oxidation from the literature, and show that the active doughnut concept gives valuable insight even when detailed mechanistic information is hard to come by.

6.
ChemCatChem ; 10(5): 1035-1041, 2018 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-29610628

RESUMEN

We study the allylic oxidation of cyclohexene with O2 under mild conditions in the presence of transition-metal catalysts. The catalysts comprise nanometric metal oxide particles supported on porous N-doped carbons (M/N:C, M=V, Cr, Fe, Co, Ni, Cu, Nb, Mo, W). Most of these metal oxides give only moderate conversions, and the majority of the products are over-oxidation products. Co/N:C and Cu/N:C, however, give 70-80 % conversion and 40-50 % selectivity to the ketone product, cyclohexene-2-one. Control experiments in which we used free-radical scavengers show that the oxidation follows the expected free-radical pathway in almost all cases. Surprisingly, the catalytic cycle in the presence of Cu/N:C does not involve free-radical species in solution. Optimisation of this catalyst gives >85 % conversion with >60 % selectivity to the allylic ketone at 70 °C and 10 bar O2. We used SEM, X-ray photoelectron spectroscopy and XRD to show that the active particles have a cupric oxide/cuprous oxide core-shell structure, giving a high turnover frequency of approximately 1500 h-1. We attribute the high performance of this Cu/N:C catalyst to a facile surface reaction between adsorbed cyclohexenyl hydroperoxide molecules and activated oxygen species.

7.
ChemSusChem ; 10(20): 4018-4024, 2017 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-28586123

RESUMEN

The specific capacitance of a highly porous, nitrogen-doped carbon is nearly tripled by orthogonal optimization of the microstructure and surface chemistry. First, the carbons' hierarchical pore structure and specific surface area were tweaked by controlling the temperature and sequence of the thermal treatments. The best process (pyrolysis at 900 °C, washing, and subsequent annealing at 1000 °C) yielded a carbon with a specific capacitance of 117 F g-1 -nearly double that of a carbon made by a typical single-step synthesis at 700 °C. Following the structural optimization, the surface chemistry of the carbons was enriched by applying an oxidation routine based on a mixture of nitric and sulfuric acid in a 1:4 ratio at two different treatment temperatures (0 and 20 °C) and different treatment times. The optimal treatment times were 4 h at 0 °C and only 1 h at 20 °C. Overall, the specific capacitance nearly tripled relative to the original carbon, reaching 168 F g-1 . The inherent nitrogen doping of the carbon comes into interplay with the acid-induced surface functionalization, creating a mixture of oxygen- and nitrogen-oxygen functionalities. The evolution of the surface chemistry was carefully followed by X-ray photoelectron spectroscopy and by N2 sorption porosimetry, revealing stepwise surface functionalization and simultaneous carbon etching. Overall, these processes are responsible for the peak-shaped capacitance trends in the carbons.


Asunto(s)
Carbono/química , Capacidad Eléctrica , Nitrógeno/química , Propiedades de Superficie
8.
Chemistry ; 22(35): 12307-11, 2016 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-27355443

RESUMEN

The activation of dioxygen for selective oxidation of organic molecules is a major catalytic challenge. Inspired by the activity of nitrogen-doped carbons in electrocatalytic oxygen reduction, we combined such a carbon with metal-oxide catalysts to yield cooperative catalysts. These simple materials boost the catalytic oxidation of several alcohols, using molecular oxygen at atmospheric pressure and low temperature (80 °C). Cobalt and copper oxide demonstrate the highest activities. The high activity and selectivity of these catalysts arises from the cooperative action of their components, as proven by various control experiments and spectroscopic techniques. We propose that the reaction should not be viewed as occurring at an 'active site', but rather at an 'active doughnut'-the volume surrounding the base of a carbon-supported metal-oxide particle.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...