Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Med Chem ; 66(10): 6652-6681, 2023 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-37134237

RESUMEN

Purine nucleoside phosphorylase (PNP) is a well-known molecular target with potential therapeutic applications in the treatment of T-cell malignancies and/or bacterial/parasitic infections. Here, we report the design, development of synthetic methodology, and biological evaluation of a series of 30 novel PNP inhibitors based on acyclic nucleoside phosphonates bearing a 9-deazahypoxanthine nucleobase. The strongest inhibitors exhibited IC50 values as low as 19 nM (human PNP) and 4 nM (Mycobacterium tuberculosis (Mt) PNP) and highly selective cytotoxicity toward various T-lymphoblastic cell lines with CC50 values as low as 9 nM. No cytotoxic effect was observed on other cancer cell lines (HeLa S3, HL60, HepG2) or primary PBMCs for up to 10 µM. We report the first example of the PNP inhibitor exhibiting over 60-fold selectivity for the pathogenic enzyme (MtPNP) over hPNP. The results are supported by a crystallographic study of eight enzyme-inhibitor complexes and by ADMET profiling in vitro and in vivo.


Asunto(s)
Inhibidores Enzimáticos , Purina-Nucleósido Fosforilasa , Humanos , Purina-Nucleósido Fosforilasa/metabolismo , Inhibidores Enzimáticos/química , Cristalografía
2.
Eur J Pharmacol ; 927: 175056, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35636520

RESUMEN

The goal of this study was to evaluate mixed cortical and hippocampal primary rat postnatal neuronal culture as in vitro tool for identification of N-methyl-D-aspartate receptor (NMDAR) antagonists and to find out, whether this model is comparable with other commonly used primary rat neuronal models differing in their origin (pure cortical vs. mixed cortical and hippocampal) and differentiation state (embryonal vs. postnatal). Induced pluripotent stem cell (iPSC) - derived human glutamatergic neurons have been included in this study as well. First, the cultures were characterized by their neuron/astrocyte composition, the mRNA expression of NR2B/NR2A NMDAR subunit ratios, and the expression of glutamate transporters (GLT1, GLAST). Then, selected endogenous steroids and synthetic neuroactive steroids that have been previously identified as negative allosteric modulators of recombinant GluN1/GluN2B NMDA receptors, were evaluated for their ability to prevent an NMDA or glutamate-induced Ca2+ influx (acute effect) and excitotoxicity over 24 h. Though the neuroprotective potential against excitotoxic stimuli varied among the models studied, postnatal mixed cortical and hippocampal culture proved to be a convenient and robust tool for NMDAR antagonist screening. The most widely used embryonal (E18) cultures offered higher cell yields but at the expense of a higher sensitivity to compounds' cytotoxicity. iPSC-derived neurons were not found to be superior to rat cultures for screening purposes.


Asunto(s)
Neuronas , Receptores de N-Metil-D-Aspartato , Animales , Células Cultivadas , Ácido Glutámico/metabolismo , Ácido Glutámico/farmacología , Hipocampo , Ratas , Receptores de N-Metil-D-Aspartato/metabolismo
3.
Bioorg Med Chem Lett ; 30(4): 126897, 2020 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-31882298

RESUMEN

The nucleoside/nucleotide derived antiviral agents have been the most important components of antiviral therapy used in clinics. Recently, the focus of the medicinal chemists within this exciting research field has been affected mainly by the lack of effective therapies for the Hepatitis C virus (HCV) infection and several other "neglected" diseases caused by viruses such as Zika or Dengue. 2'-Methyl modified nucleosides and their monophosphate prodrugs (ProTides) have revolutionized the therapies for HCV in the last few years and, according to the latest research efforts, have also brought a promise for treatment of diseases caused by other members of Flaviviridae family. Here, we report on the design and synthesis of 5'-N and S modified ProTides derived from 2'-methyladenosine. We studied potential applicability of these derivatives as prodrugs of this archetypal antiviral compound.


Asunto(s)
Antivirales/química , Nucleótidos/química , Profármacos/química , Adenosina/análogos & derivados , Adenosina/química , Antivirales/síntesis química , Antivirales/farmacología , Virus del Dengue/efectos de los fármacos , Hepacivirus/efectos de los fármacos , Humanos , Espectroscopía de Resonancia Magnética , Nitrógeno/química , Nucleótidos/metabolismo , Nucleótidos/farmacología , Profármacos/síntesis química , Profármacos/farmacología , Azufre/química , Virus Zika/efectos de los fármacos
4.
J Steroid Biochem Mol Biol ; 189: 195-203, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30872014

RESUMEN

A broad variety of central nervous system diseases have been associated with glutamate induced excitotoxicity under pathological conditions. The neuroprotective effects of neurosteroids can combat this excitotoxicity. Herein, we have demonstrated the neuroprotective effect of novel steroidal N-methyl-D-aspartate receptor inhibitors against glutamate- or NMDA- induced excitotoxicity. Pretreatment with neurosteroids significantly reduced acute L-glutamic acid or NMDA excitotoxicity mediated by Ca2+ entry and consequent ROS (reactive oxygen species) release and caspase-3 activation. Compounds 6 (IC50 = 5.8 µM), 7 (IC50 = 12.2 µM), 9 (IC50 = 7.8 µM), 13 (IC50 = 1.1 µM) and 16 (IC50 = 8.2 µM) attenuated glutamate-induced Ca2+ entry more effectively than memantine (IC50 = 18.9 µM). Moreover, compound 13 shows comparable effect with MK-801 (IC50 = 1.2 µM) and also afforded significant protection without any adverse effect upon prolonged exposure. This drop in Ca2+ level resulted in corresponding ROS suppression and prevented glutamate-induced caspase-3 activation. Therefore, compound 13 has great potential for development into a therapeutic agent for improving glutamate-related nervous system diseases.


Asunto(s)
Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Neurotransmisores/farmacología , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Animales , Células Cultivadas , Ácido Glutámico/efectos adversos , N-Metilaspartato/efectos adversos , Neuronas/citología , Neuronas/metabolismo , Neuroprotección/efectos de los fármacos , Fármacos Neuroprotectores/química , Neurotransmisores/química , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo
5.
Front Pharmacol ; 9: 1299, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30483134

RESUMEN

Herein, we report the synthesis, structure-activity relationship study, and biological evaluation of neurosteroid inhibitors of N-methyl-D-aspartate receptors (NMDARs) receptors that employ an amide structural motif, relative to pregnanolone glutamate (PAG) - a compound with neuroprotective properties. All compounds were found to be more potent NMDAR inhibitors (IC50 values varying from 1.4 to 21.7 µM) than PAG (IC50 = 51.7 µM). Selected compound 6 was evaluated for its NMDAR subtype selectivity and its ability to inhibit AMPAR/GABAR responses. Compound 6 inhibits the NMDARs (8.3 receptors (8.3 ± 2.1 µM) more strongly than it does at the GABAR and AMPARs (17.0 receptors (17.0 ± 0.2 µM and 276.4 ± 178.7 µM, respectively). In addition, compound 6 (10 µM) decreases the frequency of action potentials recorded in cultured hippocampal neurons. Next, compounds 3, 5-7, 9, and 10 were not associated with mitotoxicity, hepatotoxicity nor ROS induction. Lastly, we were able to show that all compounds have improved rat and human plasma stability over PAG.

6.
ChemMedChem ; 13(17): 1779-1796, 2018 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-29968968

RESUMEN

A series of 13 acyclic nucleoside phosphonates (ANPs) as bisamidate prodrugs was prepared. Five compounds were found to be non-cytotoxic and selective inhibitors of Bordetella pertussis adenylate cyclase toxin (ACT) in J774A.1 macrophage cell-based assays. The 8-aza-7-deazapurine derivative of adefovir (PMEA) was found to be the most potent ACT inhibitor in the series (IC50 =16 nm) with substantial selectivity over mammalian adenylate cyclases (mACs). AC inhibitory properties of the most potent analogues were confirmed by direct evaluation of the corresponding phosphonodiphosphates in cell-free assays and were found to be potent inhibitors of both ACT and edema factor (EF) from Bacillus anthracis (IC50 values ranging from 0.5 to 21 nm). Moreover, 7-halo-7-deazapurine analogues of PMEA were discovered to be potent and selective mammalian AC1 inhibitors (no inhibition of AC2 and AC5) with IC50 values ranging from 4.1 to 5.6 µm in HEK293 cell-based assays.


Asunto(s)
Adenina/análogos & derivados , Adenilil Ciclasas/metabolismo , Bacillus anthracis/enzimología , Bordetella pertussis/enzimología , Inhibidores Enzimáticos/farmacología , Organofosfonatos/farmacología , Adenina/síntesis química , Adenina/química , Adenina/farmacología , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Estructura Molecular , Organofosfonatos/síntesis química , Organofosfonatos/química , Relación Estructura-Actividad
7.
ChemMedChem ; 13(2): 199-206, 2018 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-29235265

RESUMEN

Inhibition of Bordetella pertussis adenylate cyclase toxin (ACT) and Bacillus anthracis edema factor (EF), key virulence factors with adenylate cyclase activity, represents a potential method for treating or preventing toxemia related to whooping cough and anthrax, respectively. Novel α-branched acyclic nucleoside phosphonates (ANPs) having a hemiaminal ether moiety were synthesized as potential inhibitors of bacterial adenylate cyclases. ANPs prepared as bisamidates were not cytotoxic, but did not exhibit any profound activity (IC50 >10 µm) toward ACT in J774A.1 macrophages. The apparent lack of activity of the bisamidates is speculated to be due to the inefficient formation of the biologically active species (ANPpp) in the cells. Conversely, two 5-haloanthraniloyl-substituted ANPs in the form of diphosphates were shown to be potent ACT and EF inhibitors with IC50 values ranging from 55 to 362 nm.


Asunto(s)
Toxina de Adenilato Ciclasa/antagonistas & inhibidores , Inhibidores de Adenilato Ciclasa/química , Proteínas Bacterianas/antagonistas & inhibidores , Toxinas Bacterianas/antagonistas & inhibidores , Nucleósidos/química , Organofosfonatos/química , Inhibidores de Adenilato Ciclasa/farmacología , Antígenos Bacterianos , Línea Celular , Supervivencia Celular/efectos de los fármacos , Humanos , Macrófagos/citología , Macrófagos/efectos de los fármacos , Simulación del Acoplamiento Molecular , Nucleósidos/farmacología , Organofosfonatos/farmacología , Unión Proteica , Conformación Proteica
8.
Steroids ; 117: 52-61, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27544449

RESUMEN

Herein, we report a new class of amide-based inhibitors (1-4) of N-methyl-d-aspartate receptors (NMDARs) that were prepared as analogues of pregnanolone sulfate (PAS) and pregnanolone glutamate (PAG) - the steroidal neuroprotective NMDAR inhibitors. A series of experiments were conducted to evaluate their physicochemical and biological properties: (i) the inhibitory effect of compounds 3 and 4 on NMDARs was significantly improved (IC50=1.0 and 1.4µM, respectively) as compared with endogenous inhibitor - pregnanolone sulfate (IC50=24.6µM) and pregnanolone glutamate (IC50=51.7µM); (ii) physicochemical properties (logP and logD) were calculated; (iii) Caco-2 assay revealed that the permeability properties of compounds 2 and 4 are comparable with pregnanolone glutamate; (iv) compounds 1-4 have minimal or no adverse hepatic effect; (v) compounds 1-4 cross blood-brain-barrier.


Asunto(s)
Neurotransmisores/química , Neurotransmisores/farmacología , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Receptores de N-Metil-D-Aspartato/metabolismo , Amidas , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/metabolismo , Células CACO-2 , Células Hep G2 , Humanos , Espectroscopía de Resonancia Magnética , Estructura Molecular , Especies Reactivas de Oxígeno/metabolismo , Relación Estructura-Actividad
9.
ChemMedChem ; 11(22): 2534-2546, 2016 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-27775243

RESUMEN

Bordetella pertussis adenylate cyclase toxin (ACT) and Bacillus anthracis edema factor (EF) are key virulence factors with adenylate cyclase (AC) activity that substantially contribute to the pathogenesis of whooping cough and anthrax, respectively. There is an urgent need to develop potent and selective inhibitors of bacterial ACs with prospects for the development of potential antibacterial therapeutics and to study their molecular interactions with the target enzymes. Novel fluorescent 5-chloroanthraniloyl-substituted acyclic nucleoside phosphonates (Cl-ANT-ANPs) were designed and synthesized in the form of their diphosphates (Cl-ANT-ANPpp) as competitive ACT and EF inhibitors with sub-micromolar potency (IC50 values: 11-622 nm). Fluorescence experiments indicated that Cl-ANT-ANPpp analogues bind to the ACT active site, and docking studies suggested that the Cl-ANT group interacts with Phe306 and Leu60. Interestingly, the increase in direct fluorescence with Cl-ANT-ANPpp having an ester linker was strictly calmodulin (CaM)-dependent, whereas Cl-ANT-ANPpp analogues with an amide linker, upon binding to ACT, increased the fluorescence even in the absence of CaM. Such a dependence of binding on structural modification could be exploited in the future design of potent inhibitors of bacterial ACs. Furthermore, one Cl-ANT-ANP in the form of a bisamidate prodrug was able to inhibit B. pertussis ACT activity in macrophage cells with IC50 =12 µm.


Asunto(s)
Inhibidores de Adenilato Ciclasa/farmacología , Adenilil Ciclasas/metabolismo , Bordetella pertussis/enzimología , Diseño de Fármacos , Colorantes Fluorescentes/farmacología , Nucleósidos/farmacología , Organofosfonatos/farmacología , Inhibidores de Adenilato Ciclasa/síntesis química , Inhibidores de Adenilato Ciclasa/química , Animales , Relación Dosis-Respuesta a Droga , Colorantes Fluorescentes/síntesis química , Colorantes Fluorescentes/química , Macrófagos/efectos de los fármacos , Ratones , Estructura Molecular , Nucleósidos/síntesis química , Nucleósidos/química , Organofosfonatos/síntesis química , Organofosfonatos/química , Relación Estructura-Actividad
10.
Antiviral Res ; 133: 119-29, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27476046

RESUMEN

Tick-borne encephalitis (TBE) represents one of the most serious arboviral neuro-infections in Europe and northern Asia. As no specific antiviral therapy is available at present, there is an urgent need for efficient drugs to treat patients with TBE virus (TBEV) infection. Using two standardised in vitro assay systems, we evaluated a series of 29 nucleoside derivatives for their ability to inhibit TBEV replication in cell lines of neuronal as well as extraneural origin. The series of tested compounds included 2'-C- or 2'-O-methyl substituted nucleosides, 2'-C-fluoro-2'-C-methyl substituted nucleosides, 3'-O-methyl substituted nucleosides, 3'-deoxynucleosides, derivatives with 4'-C-azido substitution, heterobase modified nucleosides and neplanocins. Our data demonstrate a relatively stringent structure-activity relationship for modifications at the 2', 3', and 4' nucleoside positions. Whereas nucleoside derivatives with the methylation at the C2' position or azido modification at the C4'position exerted a strong TBEV inhibition activity (EC50 from 0.3 to 11.1 µM) and low cytotoxicity in vitro, substitutions of the O2' and O3' positions led to a complete loss of anti-TBEV activity (EC50 > 50 µM). Moreover, some structural modifications of the heterobase moiety resulted in a high increase of cytotoxicity in vitro. High antiviral activity and low cytotoxicity of C2' methylated or C4' azido substituted pharmacophores suggest that such compounds might represent promising candidates for further development of potential therapeutic agents in treating TBEV infection.


Asunto(s)
Antivirales/química , Antivirales/farmacología , Virus de la Encefalitis Transmitidos por Garrapatas/efectos de los fármacos , Nucleósidos/química , Nucleósidos/farmacología , Animales , Línea Celular , Relación Dosis-Respuesta a Droga , Encefalitis Transmitida por Garrapatas/tratamiento farmacológico , Encefalitis Transmitida por Garrapatas/virología , Estructura Molecular , Relación Estructura-Actividad , Porcinos , Replicación Viral/efectos de los fármacos
11.
Free Radic Biol Med ; 97: 223-235, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27288283

RESUMEN

UNLABELLED: 9-Norbornyl-6-chloropurine (NCP) is a representative of a series of antienteroviral bicycle derivatives with selective cytotoxicity towards leukemia cell lines. In this work we explored the mechanism of the antileukemic activity of NCP in T-cell lymphoblast cells (CCRF-CEM). Specifically, we searched for a potential link between its ability to induce cell death on the one hand and to modulate intracellular glutathione (GSH) that is necessary to its metabolic transformation via glutathione-S-transferase on the other hand. We have observed that GSH levels decreased rapidly in NCP-treated cells. Despite a complete regeneration following 24h of incubation with NCP, this profound drop in cellular GSH content triggered ER stress, ROS production and lipid peroxidation leading to the loss of mitochondrial membrane potential (MMP). These events induced concentration-dependent cell cycle arrest in G2/M phase and apoptosis. Both MMP loss and apoptosis were reversed by sulfhydryl-containing compounds (GSH, N-acetyl-l-cysteine). Furthermore, we have also shown that NCP-induced GSH decrease activated the Nrf2 pathway and its downstream targets NAD(P)H: quinone oxidoreductase (NQO-1) and glutamate cysteine ligase modifier subunit (GCLm), thus explaining the fast restoration of GSH pool and ROS decrease. Importantly, we confirmed that the cell death-inducing properties of the compounds were co-dependent on their ability to diminish cellular GSH level by analyzing the relationships between the GSH-depleting potency and cytotoxicity in a series of other norbornylpurine analogs. Altogether, the results demonstrated that in CCRF-CEM cells NCP triggered apoptosis through GSH depletion-associated oxidative and ER stress and mitochondrial depolarization.


Asunto(s)
Glutatión Transferasa/genética , Leucemia de Células T/tratamiento farmacológico , Estrés Oxidativo/efectos de los fármacos , Purinas/administración & dosificación , Apoptosis/efectos de los fármacos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Regulación Leucémica de la Expresión Génica/efectos de los fármacos , Glutamato-Cisteína Ligasa/genética , Glutatión/metabolismo , Humanos , Leucemia de Células T/genética , Leucemia de Células T/metabolismo , Leucemia de Células T/patología , Peroxidación de Lípido/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/patología , NAD(P)H Deshidrogenasa (Quinona)/genética , Especies Reactivas de Oxígeno/metabolismo
12.
ChemMedChem ; 10(8): 1351-64, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26136378

RESUMEN

Novel small-molecule agents to treat Bordetella pertussis infections are highly desirable, as pertussis (whooping cough) remains a serious health threat worldwide. In this study, a series of 2-substituted derivatives of 9-[2-(phosphonomethoxy)ethyl]adenine (PMEA, adefovir), in their isopropyl ester bis(L-phenylalanine) prodrug form, were designed and synthesized as potent inhibitors of adenylate cyclase toxin (ACT) isolated from B. pertussis. The series consists of PMEA analogues bearing either a linear or branched aliphatic chain or a heteroatom at the C2 position of the purine moiety. Compounds with a small C2 substituent showed high potency against ACT without cytotoxic effects as well as good selectivity over human adenylate cyclase isoforms AC1, AC2, and AC5. The most potent ACT inhibitor was found to be the bisamidate prodrug of the 2-fluoro PMEA derivative (IC50 =0.145 µM). Although the bisamidate prodrugs reported herein exhibit overall lower activity than the bis(pivaloyloxymethyl) prodrug (adefovir dipivoxil), their toxicity and plasma stability profiles are superior. Furthermore, the bisamidate prodrug was shown to be more stable in plasma than in macrophage homogenate, indicating that the free phosphonate can be effectively distributed to target tissues, such as the lungs. Thus, ACT inhibitors based on acyclic nucleoside phosphonates may represent a new strategy to treat whooping cough.


Asunto(s)
Adenina/análogos & derivados , Toxina de Adenilato Ciclasa/antagonistas & inhibidores , Bordetella pertussis/metabolismo , Organofosfonatos/química , Profármacos/química , Adenina/síntesis química , Adenina/química , Adenina/toxicidad , Toxina de Adenilato Ciclasa/metabolismo , Animales , Sitios de Unión , Línea Celular , Supervivencia Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Semivida , Humanos , Masculino , Ratones , Simulación del Acoplamiento Molecular , Organofosfonatos/síntesis química , Organofosfonatos/toxicidad , Profármacos/farmacocinética , Profármacos/toxicidad , Unión Proteica , Isoformas de Proteínas/antagonistas & inhibidores , Isoformas de Proteínas/metabolismo , Estructura Terciaria de Proteína , Ratas , Ratas Wistar
13.
Antimicrob Agents Chemother ; 58(2): 664-71, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24145524

RESUMEN

Adenylate cyclase toxin (ACT) is the key virulence factor of Bordetella pertussis that facilitates its invasion into the mammalian body. 9-[2-(Phosphonomethoxy)ethyl]adenine diphosphate (PMEApp), the active metabolite of the antiviral drug bis(POM)PMEA (adefovir dipivoxil), has been shown to inhibit ACT. The objective of this study was to evaluate six novel amidate prodrugs of PMEA, both phenyloxy phosphonamidates and phosphonodiamidates, for their ability to inhibit ACT activity in the J774A.1 macrophage cell line. The two phenyloxy phosphonamidate prodrugs exhibited greater inhibitory activity (50% inhibitory concentration [IC50] = 22 and 46 nM) than the phosphonodiamidates (IC50 = 84 to 3,960 nM). The inhibitory activity of the prodrugs correlated with their lipophilicity and the degree of their hydrolysis into free PMEA in J774A.1 cells. Although the prodrugs did not inhibit ACT as effectively as bis(POM)PMEA (IC50 = 6 nM), they were significantly less cytotoxic. Moreover, they all reduced apoptotic effects of ACT and prevented an ACT-induced elevation of intracellular [Ca(2+)]i. The amidate prodrugs were less susceptible to degradation in Caco-2 cells compared to bis(POM)PMEA, while they exerted good transepithelial permeability in this assay. As a consequence, a large amount of intact amidate prodrug is expected to be available to target macrophages in vivo. This feature makes nontoxic amidate prodrugs attractive candidates for further investigation as novel antimicrobial agents.


Asunto(s)
Adenina/análogos & derivados , Toxina de Adenilato Ciclasa/antagonistas & inhibidores , Antibacterianos/farmacología , Bordetella pertussis/efectos de los fármacos , Profármacos/farmacología , Adenina/metabolismo , Adenina/farmacología , Toxina de Adenilato Ciclasa/metabolismo , Animales , Antibacterianos/metabolismo , Bordetella pertussis/crecimiento & desarrollo , Bordetella pertussis/patogenicidad , Células CACO-2 , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Humanos , Concentración 50 Inhibidora , Macrófagos/efectos de los fármacos , Macrófagos/microbiología , Ratones , Pruebas de Sensibilidad Microbiana , Organofosfonatos/farmacología , Profármacos/metabolismo
14.
Fundam Clin Pharmacol ; 17(3): 331-9, 2003 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-12803572

RESUMEN

Substances that can affect the crystallization of cholesterol from human bile and consequently the gallstone formation have been given considerable attention. We improved the model system for testing cholesterol crystallization-affecting activity (promoting or inhibiting) of substances and used it for some drugs that are excreted into bile. Besides other factors natural lipid-protein complexes isolated from the native human bile have been shown to be responsible for nucleation and fast crystal growth in cholesterol supersaturated model bile. Artificial lipid-protein complex of taurolithocholate, human serum albumin and Ca2+ (TLTC-HSA-Ca2+) exhibited a lower crystallization activity than both the artificial lipid-protein complexes of taurodeoxycholate, human serum albumin and Ca2+ and the lipid-protein complex isolated from native human bile. The model bile supplemented with this artificial lipid-protein complex (TLTC-HSA-Ca2+) formed a convenient system for testing of various substances (drugs) for their crystallization-affecting activity. From the 20 tested drugs, which could occur at least in small amounts in human bile, the highest crystallization-promoting activity was found for complexes with ampicillin, butorphanol and colchicine. Complexes with tetracycline, thioridazine and doxycycline were the strongest inhibitors. The drugs, which had some effect on cholesterol crystallization, affected somehow the artificial lipid-albumin complex by displacing its components. Interactions of different drugs with HSA and its artificial complexes with the conjugated bile salt and Ca2+ ions were followed by absorption spectroscopy to observe displacement interactions. On the basis of these experiments we could classify drugs into four groups which differ by their effects on spectral characteristics of complexes.


Asunto(s)
Bilis/química , Colesterol/química , Preparaciones Farmacéuticas/química , Albúmina Sérica/química , Calcio/química , Cristalización , Modelos Biológicos , Modelos Químicos , Unión Proteica , Ácido Tauroquenodesoxicólico/química , Ácido Taurodesoxicólico/química , Ácido Taurolitocólico/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...