Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Phycol ; 59(5): 893-907, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37497792

RESUMEN

Warming ocean temperatures have been linked to kelp forest declines worldwide, and elevated temperatures can act synergistically with other local stressors to exacerbate kelp loss. The bull kelp Nereocystis luetkeana is the primary canopy-forming kelp species in the Salish Sea, where it is declining in areas with elevated summer water temperatures and low nutrient concentrations. To determine the interactive effects of these two stressors on microscopic stages of N. luetkeana, we cultured gametophytes and microscopic sporophytes from seven different Salish Sea populations across seven different temperatures (10-22°C) and two nitrogen concentrations. The thermal tolerance of microscopic gametophytes and sporophytes was similar across populations, and high temperatures were more stressful than low nitrogen levels. Additional nitrogen did not improve gametophyte or sporophyte survival at high temperatures. Gametophyte densities were highest between 10 and 16°C and declined sharply at 18°C, and temperatures of 20 and 22°C were lethal. The window for successful sporophyte production was narrower, peaking at 10-14°C. Across all populations, the warmest temperature at which sporophytes were produced was 16 or 18°C, but sporophyte densities were 78% lower at 16°C and 95% lower at 18°C compared to cooler temperatures. In the field, bottom temperatures revealed that the thermal limits of gametophyte growth (18°C) and sporophyte production (16-18°C) were reached during the summer at multiple sites. Prolonged exposure of bull kelp gametophytes to temperatures of 16°C and above could limit reproduction, and therefore recruitment, of adult kelp sporophytes.


Asunto(s)
Kelp , Phaeophyceae , Temperatura , Bosques , Nitrógeno
2.
J Phycol ; 57(3): 903-915, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33587755

RESUMEN

Biological invasions have become increasingly prevalent in marine ecosystems, modifying biodiversity and altering the way ecosystems function. Understanding how variation in environmental factors influences the success of non-native species, especially their early life stages, can be a crucial step in identifying habitats that are under threat of invasion, and in predicting how rapidly and far these species may spread once they arrive in novel habitats. The invasive marine macroalga Sargassum horneri was first observed in Long Beach Harbor, CA, USA in 2003, and has since spread throughout the Southern California Bight and along the Baja California Peninsula, MEX where it now forms dense stands on subtidal rocky reefs and displaces native habitat-forming macroalgae. We examined how variation in temperature, nutrients, and irradiance affect survival, growth, and development in S. horneri early life stages over a three-week period. Our experimental treatments consisted of orthogonally crossed temperatures (10, 15, 20, and 25°C), nutrient concentrations (ambient and nutrient-enriched seawater), and irradiances (50 and 500 µmol photons · m-2 · s-1 ). Overall, temperature exerted the greatest influence on S. horneri's germling and juvenile life stages, with moderate temperatures facilitating their greatest survival, growth, and development. In contrast, fewer germlings developed fully under the lowest or highest temperatures, and juvenile survival and growth were reduced, especially when combined with low irradiances. Together, our data suggest that ocean temperatures of or below 10˚C and of or above 25°C may slow, but likely not stop, S. horneri's northward and southward expansion along the California and Baja California coasts.


Asunto(s)
Phaeophyceae , Sargassum , California , Ecosistema , México
3.
PLoS One ; 15(3): e0226173, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32130220

RESUMEN

Trophic interactions can result in changes to the abundance and distribution of habitat-forming species that dramatically reduce ecosystem functioning. In the coastal zone of the Aleutian Archipelago, overgrazing by herbivorous sea urchins that began in the 1990s resulted in widespread deforestation of the region's kelp forests, which led to lower macroalgal abundances and higher benthic irradiances. We examined how this deforestation impacted ecosystem function by comparing patterns of net ecosystem production (NEP), gross primary production (GPP), ecosystem respiration (Re), and the range between GPP and Re in remnant kelp forests, urchin barrens, and habitats that were in transition between the two habitat types at nine islands that spanned more than 1000 kilometers of the archipelago. Our results show that deforestation, on average, resulted in a 24% reduction in GPP, a 26% reduction in Re, and a 24% reduction in the range between GPP and Re. Further, the transition habitats were intermediate to the kelp forests and urchin barrens for these metrics. These opposing metabolic processes remained in balance; however, which resulted in little-to-no changes to NEP. These effects of deforestation on ecosystem productivity, however, were highly variable between years and among the study islands. In light of the worldwide declines in kelp forests observed in recent decades, our findings suggest that marine deforestation profoundly affects how coastal ecosystems function.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Kelp/crecimiento & desarrollo , Modelos Biológicos , Erizos de Mar/fisiología , Animales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA