Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Glob Chang Biol ; 29(8): 2256-2273, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36560840

RESUMEN

Accurate estimation and forecasts of net biome CO2 exchange (NBE) are vital for understanding the role of terrestrial ecosystems in a changing climate. Prior efforts to improve NBE predictions have predominantly focused on increasing models' structural realism (and thus complexity), but parametric error and uncertainty are also key determinants of model skill. Here, we investigate how different parameterization assumptions propagate into NBE prediction errors across the globe, pitting the traditional plant functional type (PFT)-based approach against a novel top-down, machine learning-based "environmental filtering" (EF) approach. To do so, we simulate these contrasting methods for parameter assignment within a flexible model-data fusion framework of the terrestrial carbon cycle (CARDAMOM) at a global scale. In the PFT-based approach, model parameters from a small number of select locations are applied uniformly within regions sharing similar land cover characteristics. In the EF-based approach, a pixel's parameters are predicted based on underlying relationships with climate, soil, and canopy properties. To isolate the role of parametric from structural uncertainty in our analysis, we benchmark the resulting PFT-based and EF-based NBE predictions with estimates from CARDAMOM's Bayesian optimization approach (whereby "true" parameters consistent with a suite of data constraints are retrieved on a pixel-by-pixel basis). When considering the mean absolute error of NBE predictions across time, we find that the EF-based approach matches or outperforms the PFT-based approach at 55% of pixels-a narrow majority. However, NBE estimates from the EF-based approach are susceptible to compensation between errors in component flux predictions and predicted parameters can align poorly with the assumed "true" values. Overall, though, the EF-based approach is comparable to conventional approaches and merits further investigation to better understand and resolve these limitations. This work provides insight into the relationship between terrestrial biosphere model performance and parametric uncertainty, informing efforts to improve model parameterization via PFT-free and trait-based approaches.


Asunto(s)
Dióxido de Carbono , Ecosistema , Teorema de Bayes , Clima , Ciclo del Carbono
2.
Glob Chang Biol ; 25(3): 938-953, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30552830

RESUMEN

It is critical to accurately estimate carbon (C) turnover time as it dominates the uncertainty in ecosystem C sinks and their response to future climate change. In the absence of direct observations of ecosystem C losses, C turnover times are commonly estimated under the steady state assumption (SSA), which has been applied across a large range of temporal and spatial scales including many at which the validity of the assumption is likely to be violated. However, the errors associated with improperly applying SSA to estimate C turnover time and its covariance with climate as well as ecosystem C sequestrations have yet to be fully quantified. Here, we developed a novel model-data fusion framework and systematically analyzed the SSA-induced biases using time-series data collected from 10 permanent forest plots in the eastern China monsoon region. The results showed that (a) the SSA significantly underestimated mean turnover times (MTTs) by 29%, thereby leading to a 4.83-fold underestimation of the net ecosystem productivity (NEP) in these forest ecosystems, a major C sink globally; (b) the SSA-induced bias in MTT and NEP correlates negatively with forest age, which provides a significant caveat for applying the SSA to young-aged ecosystems; and (c) the sensitivity of MTT to temperature and precipitation was 22% and 42% lower, respectively, under the SSA. Thus, under the expected climate change, spatiotemporal changes in MTT are likely to be underestimated, thereby resulting in large errors in the variability of predicted global NEP. With the development of observation technology and the accumulation of spatiotemporal data, we suggest estimating MTTs at the disequilibrium state via long-term data assimilation, thereby effectively reducing the uncertainty in ecosystem C sequestration estimations and providing a better understanding of regional or global C cycle dynamics and C-climate feedback.


Asunto(s)
Ciclo del Carbono , Secuestro de Carbono , Cambio Climático , Ecosistema , Monitoreo del Ambiente , Carbono/análisis , China , Bosques , Modelos Teóricos , Lluvia , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...