Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 223
Filtrar
1.
Hum Brain Mapp ; 45(7): e26703, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38716714

RESUMEN

The default mode network (DMN) lies towards the heteromodal end of the principal gradient of intrinsic connectivity, maximally separated from the sensory-motor cortex. It supports memory-based cognition, including the capacity to retrieve conceptual and evaluative information from sensory inputs, and to generate meaningful states internally; however, the functional organisation of DMN that can support these distinct modes of retrieval remains unclear. We used fMRI to examine whether activation within subsystems of DMN differed as a function of retrieval demands, or the type of association to be retrieved, or both. In a picture association task, participants retrieved semantic associations that were either contextual or emotional in nature. Participants were asked to avoid generating episodic associations. In the generate phase, these associations were retrieved from a novel picture, while in the switch phase, participants retrieved a new association for the same image. Semantic context and emotion trials were associated with dissociable DMN subnetworks, indicating that a key dimension of DMN organisation relates to the type of association being accessed. The frontotemporal and medial temporal DMN showed a preference for emotional and semantic contextual associations, respectively. Relative to the generate phase, the switch phase recruited clusters closer to the heteromodal apex of the principal gradient-a cortical hierarchy separating unimodal and heteromodal regions. There were no differences in this effect between association types. Instead, memory switching was associated with a distinct subnetwork associated with controlled internal cognition. These findings delineate distinct patterns of DMN recruitment for different kinds of associations yet common responses across tasks that reflect retrieval demands.


Asunto(s)
Red en Modo Predeterminado , Emociones , Imagen por Resonancia Magnética , Recuerdo Mental , Semántica , Humanos , Masculino , Femenino , Adulto , Adulto Joven , Emociones/fisiología , Red en Modo Predeterminado/fisiología , Red en Modo Predeterminado/diagnóstico por imagen , Recuerdo Mental/fisiología , Corteza Cerebral/fisiología , Corteza Cerebral/diagnóstico por imagen , Red Nerviosa/fisiología , Red Nerviosa/diagnóstico por imagen , Mapeo Encefálico , Reconocimiento Visual de Modelos/fisiología
2.
Nat Commun ; 15(1): 4078, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38778048

RESUMEN

Core features of human cognition highlight the importance of the capacity to focus on information distinct from events in the here and now, such as mind wandering. However, the brain mechanisms that underpin these self-generated states remain unclear. An emerging hypothesis is that self-generated states depend on the process of memory replay, which is linked to sharp-wave ripples (SWRs), which are transient high-frequency oscillations originating in the hippocampus. Local field potentials were recorded from the hippocampus of 10 patients with epilepsy for up to 15 days, and experience sampling was used to describe their association with ongoing thought patterns. The SWR rates were higher during extended periods of time when participants' ongoing thoughts were more vivid, less desirable, had more imaginable properties, and exhibited fewer correlations with an external task. These data suggest a role for SWR in the patterns of ongoing thoughts that humans experience in daily life.


Asunto(s)
Epilepsia , Hipocampo , Humanos , Hipocampo/fisiología , Masculino , Femenino , Adulto , Epilepsia/fisiopatología , Pensamiento/fisiología , Persona de Mediana Edad , Electroencefalografía , Adulto Joven , Cognición/fisiología , Memoria/fisiología , Ondas Encefálicas/fisiología
3.
Neuroinformatics ; 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38568476

RESUMEN

Multimodal neuroimaging grants a powerful in vivo window into the structure and function of the human brain. Recent methodological and conceptual advances have enabled investigations of the interplay between large-scale spatial trends - or gradients - in brain structure and function, offering a framework to unify principles of brain organization across multiple scales. Strong community enthusiasm for these techniques has been instrumental in their widespread adoption and implementation to answer key questions in neuroscience. Following a brief review of current literature on this framework, this perspective paper will highlight how pragmatic steps aiming to make gradient methods more accessible to the community propelled these techniques to the forefront of neuroscientific inquiry. More specifically, we will emphasize how interest for gradient methods was catalyzed by data sharing, open-source software development, as well as the organization of dedicated workshops led by a diverse team of early career researchers. To this end, we argue that the growing excitement for brain gradients is the result of coordinated and consistent efforts to build an inclusive community and can serve as a case in point for future innovations and conceptual advances in neuroinformatics. We close this perspective paper by discussing challenges for the continuous refinement of neuroscientific theory, methodological innovation, and real-world translation to maintain our collective progress towards integrated models of brain organization.

4.
Schizophr Bull ; 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38687874

RESUMEN

BACKGROUND: Negative symptoms in schizophrenia (SZ), such as apathy and diminished expression, have limited treatments and significantly impact daily life. Our study focuses on the functional division of the striatum: limbic-motivation and reward, associative-cognition, and sensorimotor-sensory and motor processing, aiming to identify potential biomarkers for negative symptoms. STUDY DESIGN: This longitudinal, 2-center resting-state-fMRI (rsfMRI) study examines striatal seeds-to-whole-brain functional connectivity. We examined connectivity aberrations in patients with schizophrenia (PwSZ), focusing on stable group differences across 2-time points using intra-class-correlation and associated these with negative symptoms and measures of cognition. Additionally, in PwSZ, we used negative symptoms to predict striatal connectivity aberrations at the baseline and used the striatal aberration to predict symptoms 9 months later. STUDY RESULTS: A total of 143 participants (77 PwSZ, 66 controls) from 2 centers (Berlin/Geneva) participated. We found sensorimotor-striatum and associative-striatum hypoconnectivity. We identified 4 stable hypoconnectivity findings over 3 months, revealing striatal-fronto-parietal-cerebellar hypoconnectivity in PwSZ. From those findings, we found hypoconnectivity in the bilateral associative striatum with the bilateral paracingulate-gyrus and the anterior cingulate cortex in PwSZ. Additionally, hypoconnectivity between the associative striatum and the superior frontal gyrus was associated with lower cognition scores in PwSZ, and weaker sensorimotor striatum connectivity with the superior parietal lobule correlated negatively with diminished expression and could predict symptom severity 9 months later. CONCLUSIONS: Importantly, patterns of weaker sensorimotor striatum and superior parietal lobule connectivity fulfilled the biomarker criteria: clinical significance, reflecting underlying pathophysiology, and stability across time and centers.

5.
Proc Natl Acad Sci U S A ; 121(18): e2314224121, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38648482

RESUMEN

Making healthy dietary choices is essential for keeping weight within a normal range. Yet many people struggle with dietary self-control despite good intentions. What distinguishes neural processing in those who succeed or fail to implement healthy eating goals? Does this vary by weight status? To examine these questions, we utilized an analytical framework of gradients that characterize systematic spatial patterns of large-scale neural activity, which have the advantage of considering the entire suite of processes subserving self-control and potential regulatory tactics at the whole-brain level. Using an established laboratory food task capturing brain responses in natural and regulatory conditions (N = 123), we demonstrate that regulatory changes of dietary brain states in the gradient space predict individual differences in dietary success. Better regulators required smaller shifts in brain states to achieve larger goal-consistent changes in dietary behaviors, pointing toward efficient network organization. This pattern was most pronounced in individuals with lower weight status (low-BMI, body mass index) but absent in high-BMI individuals. Consistent with prior work, regulatory goals increased activity in frontoparietal brain circuits. However, this shift in brain states alone did not predict variance in dietary success. Instead, regulatory success emerged from combined changes along multiple gradients, showcasing the interplay of different large-scale brain networks subserving dietary control and possible regulatory strategies. Our results provide insights into how the brain might solve the problem of dietary control: Dietary success may be easier for people who adopt modes of large-scale brain activation that do not require significant reconfigurations across contexts and goals.


Asunto(s)
Índice de Masa Corporal , Humanos , Masculino , Femenino , Adulto , Adulto Joven , Conducta Alimentaria/fisiología , Imagen por Resonancia Magnética , Encéfalo/fisiología , Autocontrol , Corteza Cerebral/fisiología , Dieta
6.
Epilepsy Behav ; 155: 109722, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38643660

RESUMEN

OBJECTIVE: Temporal lobe epilepsy (TLE) is typically associated with pathology of the hippocampus, a key structure involved in relational memory, including episodic, semantic, and spatial memory processes. While it is widely accepted that TLE-associated hippocampal alterations underlie memory deficits, it remains unclear whether impairments relate to a specific cognitive domain or multiple ones. METHODS: We administered a recently validated task paradigm to evaluate episodic, semantic, and spatial memory in 24 pharmacoresistant TLE patients and 50 age- and sex-matched healthy controls. We carried out two-way analyses of variance to identify memory deficits in individuals with TLE relative to controls across different relational memory domains, and used partial least squares correlation to identify factors contributing to variations in relational memory performance across both cohorts. RESULTS: Compared to controls, TLE patients showed marked impairments in episodic and spatial memory, with mixed findings in semantic memory. Even when additionally controlling for age, sex, and overall cognitive function, between-group differences persisted along episodic and spatial domains. Moreover, age, diagnostic group, and hippocampal volume were all associated with relational memory behavioral phenotypes. SIGNIFICANCE: Our behavioral findings show graded deficits across relational memory domains in people with TLE, which provides further insights into the complex pattern of cognitive impairment in the condition.


Asunto(s)
Epilepsia del Lóbulo Temporal , Trastornos de la Memoria , Memoria Episódica , Humanos , Epilepsia del Lóbulo Temporal/psicología , Epilepsia del Lóbulo Temporal/complicaciones , Masculino , Femenino , Adulto , Trastornos de la Memoria/etiología , Persona de Mediana Edad , Pruebas Neuropsicológicas , Hipocampo/patología , Adulto Joven , Memoria Espacial/fisiología , Semántica
7.
J Neurosci ; 44(20)2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38589231

RESUMEN

The default mode network (DMN) typically deactivates to external tasks, yet supports semantic cognition. It comprises medial temporal (MT), core, and frontotemporal (FT) subsystems, but its functional organization is unclear: the requirement for perceptual coupling versus decoupling, input modality (visual/verbal), type of information (social/spatial), and control demands all potentially affect its recruitment. We examined the effect of these factors on activation and deactivation of DMN subsystems during semantic cognition, across four task-based human functional magnetic resonance imaging (fMRI) datasets, and localized these responses in whole-brain state space defined by gradients of intrinsic connectivity. FT showed activation consistent with a central role across domains, tasks, and modalities, although it was most responsive to abstract, verbal tasks; this subsystem uniquely showed more "tuned" states characterized by increases in both activation and deactivation when semantic retrieval demands were higher. MT also activated to both perceptually coupled (scenes) and decoupled (autobiographical memory) tasks and showed stronger responses to picture associations, consistent with a role in scene construction. Core DMN consistently showed deactivation, especially to externally oriented tasks. These diverse contributions of DMN subsystems to semantic cognition were related to their location on intrinsic connectivity gradients: activation was closer to the sensory-motor cortex than deactivation, particularly for FT and MT, while activation for core DMN was distant from both visual cortex and cognitive control. These results reveal distinctive yet complementary DMN responses: MT and FT support different memory-based representations that are accessed externally and internally, while deactivation in core DMN is associated with demanding, external semantic tasks.


Asunto(s)
Cognición , Red en Modo Predeterminado , Imagen por Resonancia Magnética , Semántica , Humanos , Masculino , Femenino , Adulto , Cognición/fisiología , Red en Modo Predeterminado/fisiología , Red en Modo Predeterminado/diagnóstico por imagen , Adulto Joven , Red Nerviosa/fisiología , Red Nerviosa/diagnóstico por imagen , Mapeo Encefálico/métodos , Encéfalo/fisiología , Encéfalo/diagnóstico por imagen
8.
Brain Lang ; 251: 105402, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38484446

RESUMEN

Recent work has focussed on how patterns of functional change within the temporal lobe relate to whole-brain dimensions of intrinsic connectivity variation (Margulies et al., 2016). We examined two such 'connectivity gradients' reflecting the separation of (i) unimodal versus heteromodal and (ii) visual versus auditory-motor cortex, examining visually presented verbal associative and feature judgments, plus picture-based context and emotion generation. Functional responses along the first dimension sometimes showed graded change between modality-tuned and heteromodal cortex (in the verbal matching task), and other times showed sharp functional transitions, with deactivation at the extremes and activation in the middle of this gradient (internal generation). The second gradient revealed more visual than auditory-motor activation, regardless of content (associative, feature, context, emotion) or task process (matching/generation). We also uncovered subtle differences across each gradient for content type, which predominantly manifested as differences in relative magnitude of activation or deactivation.


Asunto(s)
Corteza Auditiva , Semántica , Humanos , Mapeo Encefálico/métodos , Imagen por Resonancia Magnética/métodos , Lóbulo Temporal/diagnóstico por imagen , Lóbulo Temporal/fisiología
9.
J Neurosci ; 44(22)2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38527807

RESUMEN

Adaptive behavior relies both on specific rules that vary across situations and stable long-term knowledge gained from experience. The frontoparietal control network (FPCN) is implicated in the brain's ability to balance these different influences on action. Here, we investigate how the topographical organization of the cortex supports behavioral flexibility within the FPCN. Functional properties of this network might reflect its juxtaposition between the dorsal attention network (DAN) and the default mode network (DMN), two large-scale systems implicated in top-down attention and memory-guided cognition, respectively. Our study tests whether subnetworks of FPCN are topographically proximal to the DAN and the DMN, respectively, and how these topographical differences relate to functional differences: the proximity of each subnetwork is anticipated to play a pivotal role in generating distinct cognitive modes relevant to working memory and long-term memory. We show that FPCN subsystems share multiple anatomical and functional similarities with their neighboring systems (DAN and DMN) and that this topographical architecture supports distinct interaction patterns that give rise to different patterns of functional behavior. The FPCN acts as a unified system when long-term knowledge supports behavior but becomes segregated into discrete subsystems with different patterns of interaction when long-term memory is less relevant. In this way, our study suggests that the topographical organization of the FPCN and the connections it forms with distant regions of cortex are important influences on how this system supports flexible behavior.


Asunto(s)
Encéfalo , Red Nerviosa , Humanos , Masculino , Femenino , Adulto , Red Nerviosa/fisiología , Red Nerviosa/diagnóstico por imagen , Encéfalo/fisiología , Imagen por Resonancia Magnética , Atención/fisiología , Adulto Joven , Red en Modo Predeterminado/fisiología , Red en Modo Predeterminado/diagnóstico por imagen , Memoria a Largo Plazo/fisiología , Mapeo Encefálico/métodos , Lóbulo Parietal/fisiología , Memoria a Corto Plazo/fisiología
10.
Hum Brain Mapp ; 45(2): e26607, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38339897

RESUMEN

Language comprehension involves multiple hierarchical processing stages across time, space, and levels of representation. When processing a word, the sensory input is transformed into increasingly abstract representations that need to be integrated with the linguistic context. Thus, language comprehension involves both input-driven as well as context-dependent processes. While neuroimaging research has traditionally focused on mapping individual brain regions to the distinct underlying processes, recent studies indicate that whole-brain distributed patterns of cortical activation might be highly relevant for cognitive functions, including language. One such pattern, based on resting-state connectivity, is the 'principal cortical gradient', which dissociates sensory from heteromodal brain regions. The present study investigated the extent to which this gradient provides an organizational principle underlying language function, using a multimodal neuroimaging dataset of functional magnetic resonance imaging (fMRI) and magnetoencephalography (MEG) recordings from 102 participants during sentence reading. We found that the brain response to individual representations of a word (word length, orthographic distance, and word frequency), which reflect visual; orthographic; and lexical properties, gradually increases towards the sensory end of the gradient. Although these properties showed opposite effect directions in fMRI and MEG, their association with the sensory end of the gradient was consistent across both neuroimaging modalities. In contrast, MEG revealed that properties reflecting a word's relation to its linguistic context (semantic similarity and position within the sentence) involve the heteromodal end of the gradient to a stronger extent. This dissociation between individual word and contextual properties was stable across earlier and later time windows during word presentation, indicating interactive processing of word representations and linguistic context at opposing ends of the principal gradient. To conclude, our findings indicate that the principal gradient underlies the organization of a range of linguistic representations while supporting a gradual distinction between context-independent and context-dependent representations. Furthermore, the gradient reveals convergent patterns across neuroimaging modalities (similar location along the gradient) in the presence of divergent responses (opposite effect directions).


Asunto(s)
Encéfalo , Comprensión , Humanos , Comprensión/fisiología , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Lingüística , Lenguaje , Semántica , Imagen por Resonancia Magnética/métodos , Mapeo Encefálico/métodos , Lectura
11.
Brain Struct Funct ; 229(1): 207-221, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38070006

RESUMEN

The Inferior Frontal Occipital Fasciculus (IFOF) is a major anterior-to-posterior white matter pathway in the ventral human brain that connects parietal, temporal and occipital regions to frontal cortex. It has been implicated in a range of functions, including language, semantics, inhibition and the control of action. The recent research shows that the IFOF can be sub-divided into a ventral and dorsal branch, but the functional relevance of this distinction, as well as any potential hemispheric differences, are poorly understood. Using DTI tractography, we investigated the involvement of dorsal and ventral subdivisions of the IFOF in the left and right hemisphere in a response inhibition task (Go/No-Go), where the decision to respond or to withhold a prepotent response was made on the basis of semantic or non-semantic aspects of visual inputs. The task also varied the presentation modality (whether concepts were presented as written words or images). The results showed that the integrity of both dorsal and ventral IFOF in the left hemisphere were associated with participants' inhibition performance when the signal to stop was meaningful and presented in the verbal modality. This effect was absent in the right hemisphere. The integrity of dorsal IFOF was also associated with participants' inhibition efficiency in difficult perceptually guided decisions. This pattern of results indicates that left dorsal IFOF is implicated in the domain-general control of visually-guided behaviour, while the left ventral branch might interface with the semantic system to support the control of action when the inhibitory signal is based on meaning.


Asunto(s)
Control de la Conducta , Semántica , Humanos , Lóbulo Occipital/fisiología , Lóbulo Frontal/fisiología , Lenguaje , Vías Nerviosas/fisiología
12.
Sci Rep ; 13(1): 21710, 2023 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-38066069

RESUMEN

Cognitive neuroscience has gained insight into covert states using experience sampling. Traditionally, this approach has focused on off-task states. However, task-relevant states are also maintained via covert processes. Our study examined whether experience sampling can also provide insights into covert goal-relevant states that support task performance. To address this question, we developed a neural state space, using dimensions of brain function variation, that allows neural correlates of overt and covert states to be examined in a common analytic space. We use this to describe brain activity during task performance, its relation to covert states identified via experience sampling, and links between individual variation in overt and covert states and task performance. Our study established deliberate task focus was linked to faster target detection, and brain states underlying this experience-and target detection-were associated with activity patterns emphasizing the fronto-parietal network. In contrast, brain states underlying off-task experiences-and vigilance periods-were linked to activity patterns emphasizing the default mode network. Our study shows experience sampling can not only describe covert states that are unrelated to the task at hand, but can also be used to highlight the role fronto-parietal regions play in the maintenance of covert task-relevant states.


Asunto(s)
Evaluación Ecológica Momentánea , Objetivos , Encéfalo , Mapeo Encefálico , Lóbulo Parietal , Imagen por Resonancia Magnética
13.
PLoS Comput Biol ; 19(10): e1011571, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37844124

RESUMEN

The definition of a brain state remains elusive, with varying interpretations across different sub-fields of neuroscience-from the level of wakefulness in anaesthesia, to activity of individual neurons, voltage in EEG, and blood flow in fMRI. This lack of consensus presents a significant challenge to the development of accurate models of neural dynamics. However, at the foundation of dynamical systems theory lies a definition of what constitutes the 'state' of a system-i.e., a specification of the system's future. Here, we propose to adopt this definition to establish brain states in neuroimaging timeseries by applying Dynamic Causal Modelling (DCM) to low-dimensional embedding of resting and task condition fMRI data. We find that ~90% of subjects in resting conditions are better described by first-order models, whereas ~55% of subjects in task conditions are better described by second-order models. Our work calls into question the status quo of using first-order equations almost exclusively within computational neuroscience and provides a new way of establishing brain states, as well as their associated phase space representations, in neuroimaging datasets.


Asunto(s)
Mapeo Encefálico , Encéfalo , Humanos , Encéfalo/fisiología , Mapeo Encefálico/métodos , Imagen por Resonancia Magnética/métodos , Neuroimagen , Modelos Teóricos
14.
Nat Commun ; 14(1): 5656, 2023 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-37704600

RESUMEN

Recent theories of cortical organisation suggest features of function emerge from the spatial arrangement of brain regions. For example, association cortex is located furthest from systems involved in action and perception. Association cortex is also 'interdigitated' with adjacent regions having different patterns of functional connectivity. It is assumed that topographic properties, such as distance between regions, constrains their functions, however, we lack a formal description of how this occurs. Here we use variograms, a quantification of spatial autocorrelation, to profile how function changes with the distance between cortical regions. We find function changes with distance more gradually within sensory-motor cortex than association cortex. Importantly, systems within the same type of cortex (e.g., fronto-parietal and default mode networks) have similar profiles. Primary and association cortex, therefore, are differentiated by how function changes over space, emphasising the value of topographical features of a region when estimating its contribution to cognition and behaviour.


Asunto(s)
Cognición , Corteza Sensoriomotora , Análisis Espacial
15.
Conscious Cogn ; 114: 103530, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37619452

RESUMEN

Health and well-being are impacted by our thoughts and the things we do. In the laboratory, studies suggest specific task contexts impact thought processes. More broadly, this suggests the people we are with, the places we are in, and the activities we perform may influence our thought patterns. In our study, participants completed experience sampling surveys for five days in daily life. Principal component analysis decomposed this data to identify common "patterns of thought," and linear mixed modelling related these patterns to the participants' activities. Our study replicated the influence of socializing on patterns of thought and established that this is part of a broader set of relationships linking activities to how thoughts are organized in daily life. Our study suggests sampling thinking in the real world may help map thoughts to activities, and these "thought-activity" mappings could be useful to researchers and health care professionals interested in health and well-being.


Asunto(s)
Evaluación Ecológica Momentánea , Procesos Mentales , Humanos , Análisis de Componente Principal , Conducta Social
16.
Cogn Res Princ Implic ; 8(1): 31, 2023 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-37227554

RESUMEN

We investigated whether increased perceptual processing difficulty during reading or listening to a Sherlock Holmes novella impacts mind wandering as well as text comprehension. We presented 175 participants with a novella in either a visual or an auditory presentation format and probed their thoughts and motivational states from time to time during reading/listening. For half of the participants in each presentation-format condition (visual or auditory), the story was superimposed by Gaussian noise. For both presentation formats, the participants who were exposed to noise while processing the story mind-wandered more and performed worse in a later comprehension test than the participants who processed the story without added noise. These negative effects of increased perceptual processing difficulty on task focus and comprehension were partly driven by motivational factors: reading/listening motivation mediated the relationship between perceptual processing difficulty and mind wandering.


Asunto(s)
Atención , Lectura , Humanos , Comprensión , Percepción Auditiva , Motivación
17.
Brain ; 146(9): 3923-3937, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37082950

RESUMEN

Temporal lobe epilepsy (TLE), one of the most common pharmaco-resistant epilepsies, is associated with pathology of paralimbic brain regions, particularly in the mesiotemporal lobe. Cognitive dysfunction in TLE is frequent, and particularly affects episodic memory. Crucially, these difficulties challenge the quality of life of patients, sometimes more than seizures, underscoring the need to assess neural processes of cognitive dysfunction in TLE to improve patient management. Our work harnessed a novel conceptual and analytical approach to assess spatial gradients of microstructural differentiation between cortical areas based on high-resolution MRI analysis. Gradients track region-to-region variations in intracortical lamination and myeloarchitecture, serving as a system-level measure of structural and functional reorganization. Comparing cortex-wide microstructural gradients between 21 patients and 35 healthy controls, we observed a reorganization of this gradient in TLE driven by reduced microstructural differentiation between paralimbic cortices and the remaining cortex with marked abnormalities in ipsilateral temporopolar and dorsolateral prefrontal regions. Findings were replicated in an independent cohort. Using an independent post-mortem dataset, we observed that in vivo findings reflected topographical variations in cortical cytoarchitecture. We indeed found that macroscale changes in microstructural differentiation in TLE reflected increased similarity of paralimbic and primary sensory/motor regions. Disease-related transcriptomics could furthermore show specificity of our findings to TLE over other common epilepsy syndromes. Finally, microstructural dedifferentiation was associated with cognitive network reorganization seen during an episodic memory functional MRI paradigm and correlated with interindividual differences in task accuracy. Collectively, our findings showing a pattern of reduced microarchitectural differentiation between paralimbic regions and the remaining cortex provide a structurally-grounded explanation for large-scale functional network reorganization and cognitive dysfunction characteristic of TLE.


Asunto(s)
Epilepsia del Lóbulo Temporal , Humanos , Epilepsia del Lóbulo Temporal/patología , Calidad de Vida , Encéfalo/patología , Imagen por Resonancia Magnética , Mapeo Encefálico
18.
Neuroimage ; 272: 120059, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-37001835

RESUMEN

Low-dimensional representations are increasingly used to study meaningful organizational principles within the human brain. Most notably, the sensorimotor-association axis consistently explains the most variance in the human connectome as its so-called principal gradient, suggesting that it represents a fundamental organizational principle. While recent work indicates these low dimensional representations are relatively robust, they are limited by modeling only certain aspects of the functional connectivity structure. To date, the majority of studies have restricted these approaches to the strongest connections in the brain, treating weaker or negative connections as noise despite evidence of meaningful structure among them. The present work examines connectivity gradients of the human connectome across a full range of connectivity strengths and explores the implications for outcomes of individual differences, identifying potential dependencies on thresholds and opportunities to improve prediction tasks. Interestingly, the sensorimotor-association axis emerged as the principal gradient of the human connectome across the entire range of connectivity levels. Moreover, the principal gradient of connections at intermediate strengths encoded individual differences, better followed individual-specific anatomical features, and was also more predictive of intelligence. Taken together, our results add to evidence of the sensorimotor-association axis as a fundamental principle of the brain's functional organization, since it is evident even in the connectivity structure of more lenient connectivity thresholds. These more loosely coupled connections further appear to contain valuable and potentially important information that could be used to improve our understanding of individual differences, diagnosis, and the prediction of treatment outcomes.


Asunto(s)
Conectoma , Humanos , Conectoma/métodos , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Individualidad , Inteligencia , Red Nerviosa/diagnóstico por imagen
19.
Sci Rep ; 13(1): 2964, 2023 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-36806195

RESUMEN

The analysis of brain function in resting-state network (RSN) models, ascertained through the functional connectivity pattern of resting-state functional magnetic resonance imaging (rs-fMRI), is sufficiently powerful for studying large-scale functional integration of the brain. However, in RSN-based research, the network architecture has been regarded as the same through different frequency bands. Thus, here, we aimed to examined whether the network architecture changes with frequency. The blood oxygen level-dependent (BOLD) signal was decomposed into four frequency bands-ranging from 0.007 to 0.438 Hz-and the clustering algorithm was applied to each of them. The best clustering number was selected for each frequency band based on the overlap ratio with task activation maps. The results demonstrated that resting-state BOLD signals exhibited frequency-specific network architecture; that is, the networks finely subdivided in the lower frequency bands were integrated into fewer networks in higher frequency bands rather than reconfigured, and the default mode network and networks related to perception had sufficiently strong architecture to survive in an environment with a lower signal-to-noise ratio. These findings provide a novel framework to enable improved understanding of brain function through the multiband frequency analysis of ultra-slow rs-fMRI data.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Algoritmos , Encéfalo/diagnóstico por imagen , Análisis por Conglomerados
20.
Cortex ; 159: 39-53, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36610108

RESUMEN

Ongoing cognition supports behavioral flexibility by facilitating behavior in the moment, and through the consideration of future actions. These different modes of cognition are hypothesized to vary with the correlation between brain activity and external input, since evoked responses are reduced when cognition switches to topics unrelated to the current task. This study examined whether these reduced evoked responses change as a consequence of the task environment in which the experience emerges. We combined electroencephalography (EEG) recording with multidimensional experience sampling (MDES) to assess the electrophysiological correlates of ongoing thought in task contexts which vary on their need to maintain continuous representations of task information for satisfactory performance. We focused on an event-related potential (ERP) known as the parietal P3 that had a greater amplitude in our tasks relying on greater external attention. A principal component analysis (PCA) of the MDES data revealed four patterns of ongoing thought: off-task episodic social cognition, deliberate on-task thought, imagery, and emotion. Participants reported more off-task episodic social cognition and mental imagery under low external demands and more deliberate on-task thought under high external task demands. Importantly, the occurrence of off-task episodic social cognition was linked to similar reductions in the amplitude of the P3 regardless of external task. These data suggest the amplitude of the P3 may often be a general feature of external task-related content and suggest attentional decoupling from sensory inputs are necessary for certain types of perceptually-decoupled, self-generated thoughts.


Asunto(s)
Cognición , Cognición Social , Humanos , Cognición/fisiología , Atención/fisiología , Electroencefalografía , Potenciales Evocados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...