Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Mater Au ; 4(2): 195-203, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38496050

RESUMEN

Dielectric constant is an important property which is widely utilized in many scientific fields and characterizes the degree of polarization of substances under the external electric field. In this work, a structure-property relationship of the dielectric constants (ε) for a diverse set of polymers was investigated. A transparent mechanistic model was developed with the application of a machine learning approach that combines genetic algorithm and multiple linear regression analysis, to obtain a mechanistically explainable and transparent model. Based on the evaluation conducted using various validation criteria, four- and eight-variable models were proposed. The best model showed a high predictive performance for training and test sets, with R2 values of 0.905 and 0.812, respectively. Obtained statistical performance results and selected descriptors in the best models were analyzed and discussed. With the validation procedures applied, the models were proven to have a good predictive ability and robustness for further applications in polymer permittivity prediction.

2.
Toxics ; 11(7)2023 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-37505560

RESUMEN

Industrial wastewater often consists of toxic chemicals and pollutants, which are extremely harmful to the environment. Heavy metals are toxic chemicals and considered one of the major hazards to the aquatic ecosystem. Analytical techniques, such as potentiometric methods, are some of the methods to detect heavy metals in wastewaters. In this work, the quantitative structure-property relationship (QSPR) was applied using a range of machine learning techniques to predict the stability constant (logßML) and potentiometric sensitivity (PSML) of 200 ligands in complexes with the heavy metal ions Cu2+, Cd2+, and Pb2+. In result, the logßML models developed for four ions showed good performance with square correlation coefficients (R2) ranging from 0.80 to 1.00 for the training and 0.72 to 0.85 for the test sets. Likewise, the PSML displayed acceptable performance with an R2 of 0.87 to 1.00 for the training and 0.73 to 0.95 for the test sets. By screening a virtual database of coumarin-like structures, several new ligands bearing the coumarin moiety were identified. Three of them, namely NEW02, NEW03, and NEW07, showed very good sensitivity and stability in the metal complexes. Subsequent quantum-chemical calculations, as well as physicochemical/toxicological profiling were performed to investigate their metal-binding ability and developability of the designed sensors. Finally, synthesis schemes are proposed to obtain these three ligands with major efficiency from simple resources. The three coumarins designed clearly demonstrated capability to be suitable as good florescent chemosensors towards heavy metals. Overall, the computational methods applied in this study showed a very good performance as useful tools for designing novel fluorescent probes and assessing their sensing abilities.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...