Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nature ; 629(8014): 1149-1157, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38720070

RESUMEN

In somatic tissue differentiation, chromatin accessibility changes govern priming and precursor commitment towards cellular fates1-3. Therefore, somatic mutations are likely to alter chromatin accessibility patterns, as they disrupt differentiation topologies leading to abnormal clonal outgrowth. However, defining the impact of somatic mutations on the epigenome in human samples is challenging due to admixed mutated and wild-type cells. Here, to chart how somatic mutations disrupt epigenetic landscapes in human clonal outgrowths, we developed genotyping of targeted loci with single-cell chromatin accessibility (GoT-ChA). This high-throughput platform links genotypes to chromatin accessibility at single-cell resolution across thousands of cells within a single assay. We applied GoT-ChA to CD34+ cells from patients with myeloproliferative neoplasms with JAK2V617F-mutated haematopoiesis. Differential accessibility analysis between wild-type and JAK2V617F-mutant progenitors revealed both cell-intrinsic and cell-state-specific shifts within mutant haematopoietic precursors, including cell-intrinsic pro-inflammatory signatures in haematopoietic stem cells, and a distinct profibrotic inflammatory chromatin landscape in megakaryocytic progenitors. Integration of mitochondrial genome profiling and cell-surface protein expression measurement allowed expansion of genotyping onto DOGMA-seq through imputation, enabling single-cell capture of genotypes, chromatin accessibility, RNA expression and cell-surface protein expression. Collectively, we show that the JAK2V617F mutation leads to epigenetic rewiring in a cell-intrinsic and cell type-specific manner, influencing inflammation states and differentiation trajectories. We envision that GoT-ChA will empower broad future investigations of the critical link between somatic mutations and epigenetic alterations across clonal populations in malignant and non-malignant contexts.


Asunto(s)
Cromatina , Epigénesis Genética , Genotipo , Mutación , Análisis de la Célula Individual , Animales , Femenino , Humanos , Masculino , Ratones , Antígenos CD34/metabolismo , Diferenciación Celular/genética , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , Epigénesis Genética/genética , Epigenoma/genética , Genoma Mitocondrial/genética , Técnicas de Genotipaje , Hematopoyesis/genética , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/patología , Inflamación/genética , Inflamación/patología , Janus Quinasa 2/genética , Janus Quinasa 2/metabolismo , Megacariocitos/metabolismo , Megacariocitos/patología , Proteínas de la Membrana/genética , Trastornos Mieloproliferativos/genética , Trastornos Mieloproliferativos/metabolismo , Trastornos Mieloproliferativos/patología , ARN/genética , Células Clonales/metabolismo
2.
Nat Genet ; 55(7): 1198-1209, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37386249

RESUMEN

Pathogenic mutations in mitochondrial DNA (mtDNA) compromise cellular metabolism, contributing to cellular heterogeneity and disease. Diverse mutations are associated with diverse clinical phenotypes, suggesting distinct organ- and cell-type-specific metabolic vulnerabilities. Here we establish a multi-omics approach to quantify deletions in mtDNA alongside cell state features in single cells derived from six patients across the phenotypic spectrum of single large-scale mtDNA deletions (SLSMDs). By profiling 206,663 cells, we reveal the dynamics of pathogenic mtDNA deletion heteroplasmy consistent with purifying selection and distinct metabolic vulnerabilities across T-cell states in vivo and validate these observations in vitro. By extending analyses to hematopoietic and erythroid progenitors, we reveal mtDNA dynamics and cell-type-specific gene regulatory adaptations, demonstrating the context-dependence of perturbing mitochondrial genomic integrity. Collectively, we report pathogenic mtDNA heteroplasmy dynamics of individual blood and immune cells across lineages, demonstrating the power of single-cell multi-omics for revealing fundamental properties of mitochondrial genetics.


Asunto(s)
ADN Mitocondrial , Enfermedades Mitocondriales , Humanos , ADN Mitocondrial/genética , Multiómica , Enfermedades Mitocondriales/genética , Mitocondrias/genética , Mutación
3.
Science ; 380(6646): eadh7699, 2023 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-37141313

RESUMEN

Most variants associated with complex traits and diseases identified by genome-wide association studies (GWAS) map to noncoding regions of the genome with unknown effects. Using ancestrally diverse, biobank-scale GWAS data, massively parallel CRISPR screens, and single-cell transcriptomic and proteomic sequencing, we discovered 124 cis-target genes of 91 noncoding blood trait GWAS loci. Using precise variant insertion through base editing, we connected specific variants with gene expression changes. We also identified trans-effect networks of noncoding loci when cis target genes encoded transcription factors or microRNAs. Networks were themselves enriched for GWAS variants and demonstrated polygenic contributions to complex traits. This platform enables massively parallel characterization of the target genes and mechanisms of human noncoding variants in both cis and trans.


Asunto(s)
Enfermedad , Estudio de Asociación del Genoma Completo , Herencia Multifactorial , Sitios de Carácter Cuantitativo , Análisis de la Célula Individual , Humanos , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Predisposición Genética a la Enfermedad , Polimorfismo de Nucleótido Simple , Proteómica , Células Sanguíneas , RNA-Seq , Enfermedad/genética
4.
Methods Mol Biol ; 2611: 249-267, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36807072

RESUMEN

While methods such as the Assay for Transposase Accessible Chromatin by sequencing (ATAC-seq) enable a comprehensive characterization of regulatory DNA, additional measurements are required to characterize the multifaceted nature of eukaryotic cells. Here, we delineate the ATAC with Select Antigen Profiling by sequencing (ASAP-seq) protocol, a scalable approach to quantifying proteins via oligo-tagged antibodies alongside accessible DNA in thousands of single cells. Critically, our method utilizes a custom bridge oligo that enables the utilization of a variety of oligo-conjugated antibodies, enabling the utilization and repurposing of other commercial products. The ASAP-seq method can be completed with straightforward experimental and computational modifications existing single-cell ATAC-seq workflows but yields distinct modalities underlying complex cellular states, including estimation of protein abundance on the cell surface as well as intracellular and intranuclear factors.


Asunto(s)
Cromatina , Secuenciación de Nucleótidos de Alto Rendimiento , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de Secuencia de ADN/métodos , ADN/genética , Secuenciación de Inmunoprecipitación de Cromatina
5.
medRxiv ; 2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-33907755

RESUMEN

SARS-CoV-2 infection and vaccination elicit potent immune responses. Our study presents a comprehensive multimodal single-cell dataset of peripheral blood of patients with acute COVID-19 and of healthy volunteers before and after receiving the SARS-CoV-2 mRNA vaccine and booster. We compared host immune responses to the virus and vaccine using transcriptional profiling, coupled with B/T cell receptor repertoire reconstruction. COVID-19 patients displayed an enhanced interferon signature and cytotoxic gene upregulation, absent in vaccine recipients. These findings were validated in an independent dataset. Analysis of B and T cell repertoires revealed that, while the majority of clonal lymphocytes in COVID-19 patients were effector cells, clonal expansion was more evident among circulating memory cells in vaccine recipients. Furthermore, while clonal αß T cell responses were observed in both COVID-19 patients and vaccine recipients, dramatic expansion of clonal γδT cells was found only in infected individuals. Our dataset enables comparative analyses of immune responses to infection versus vaccination, including clonal B and T cell responses. Integrating our data with publicly available datasets allowed us to validate our findings in larger cohorts. To our knowledge, this is the first dataset to include comprehensive profiling of longitudinal samples from healthy volunteers pre/post SARS-CoV-2 vaccine and booster.

6.
Nat Methods ; 20(1): 86-94, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36550277

RESUMEN

Pooled CRISPR screens coupled with single-cell RNA-sequencing have enabled systematic interrogation of gene function and regulatory networks. Here, we introduce Cas13 RNA Perturb-seq (CaRPool-seq), which leverages the RNA-targeting CRISPR-Cas13d system and enables efficient combinatorial perturbations alongside multimodal single-cell profiling. CaRPool-seq encodes multiple perturbations on a cleavable CRISPR array that is associated with a detectable barcode sequence, allowing for the simultaneous targeting of multiple genes. We compared CaRPool-seq to existing Cas9-based methods, highlighting its unique strength to efficiently profile combinatorially perturbed cells. Finally, we apply CaRPool-seq to perform multiplexed combinatorial perturbations of myeloid differentiation regulators in an acute myeloid leukemia (AML) model system and identify extensive interactions between different chromatin regulators that can enhance or suppress AML differentiation phenotypes.


Asunto(s)
Cromatina , ARN , ARN/genética , Sistemas CRISPR-Cas/genética
7.
iScience ; 26(12): 108572, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38213787

RESUMEN

SARS-CoV-2 infection and vaccination elicit potent immune responses. Our study presents a comprehensive multimodal single-cell analysis of blood from COVID-19 patients and healthy volunteers receiving the SARS-CoV-2 vaccine and booster. We profiled immune responses via transcriptional analysis and lymphocyte repertoire reconstruction. COVID-19 patients displayed an enhanced interferon signature and cytotoxic gene upregulation, absent in vaccine recipients. B and T cell repertoire analysis revealed clonal expansion among effector cells in COVID-19 patients and memory cells in vaccine recipients. Furthermore, while clonal αß T cell responses were observed in both COVID-19 patients and vaccine recipients, expansion of clonal γδ T cells was found only in infected individuals. Our dataset enables side-by-side comparison of immune responses to infection versus vaccination, including clonal B and T cell responses. Our comparative analysis shows that vaccination induces a robust, durable clonal B and T cell responses, without the severe inflammation associated with infection.

8.
Sci Rep ; 12(1): 5081, 2022 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-35332182

RESUMEN

Fluorescence microscopy is a key method in the life sciences. State of the art -omics methods combine fluorescence microscopy with complex protocols to visualize tens to thousands of features in each of millions of pixels across samples. These -omics methods require precise control of temperature, reagent application, and image acquisition parameters during iterative chemistry and imaging cycles conducted over the course of days or weeks. Automated execution of such methods enables robust and reproducible data generation. However, few commercial solutions exist for temperature controlled, fluidics coupled fluorescence imaging, and implementation of bespoke instrumentation requires specialized engineering expertise. Here we present PySeq2500, an open source Python code base and flow cell design that converts the Illumina HiSeq 2500 instrument, comprising an epifluorescence microscope with integrated fluidics, into an open platform for programmable applications without need for specialized engineering or software development expertise. Customizable PySeq2500 protocols enable experimental designs involving simultaneous 4-channel image acquisition, temperature control, reagent exchange, stable positioning, and sample integrity over extended experiments. To demonstrate accessible automation of complex, multi-day workflows, we use the PySeq2500 system for unattended execution of iterative indirect immunofluorescence imaging (4i). Our automated 4i method uses off-the-shelf antibodies over multiple cycles of staining, imaging, and antibody elution to build highly multiplexed maps of cell types and pathological features in mouse and postmortem human spinal cord sections. Given the widespread availability of HiSeq 2500 platforms and the simplicity of the modifications required to repurpose these systems, PySeq2500 enables non-specialists to develop and implement state of the art fluidics coupled imaging methods in a widely available benchtop system.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Programas Informáticos , Animales , Heces , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Ratones , Imagen Óptica , Flujo de Trabajo
9.
Nat Biotechnol ; 40(8): 1220-1230, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35332340

RESUMEN

Technologies that profile chromatin modifications at single-cell resolution offer enormous promise for functional genomic characterization, but the sparsity of the measurements and integrating multiple binding maps represent substantial challenges. Here we introduce single-cell (sc)CUT&Tag-pro, a multimodal assay for profiling protein-DNA interactions coupled with the abundance of surface proteins in single cells. In addition, we introduce single-cell ChromHMM, which integrates data from multiple experiments to infer and annotate chromatin states based on combinatorial histone modification patterns. We apply these tools to perform an integrated analysis across nine different molecular modalities in circulating human immune cells. We demonstrate how these two approaches can characterize dynamic changes in the function of individual genomic elements across both discrete cell states and continuous developmental trajectories, nominate associated motifs and regulators that establish chromatin states and identify extensive and cell-type-specific regulatory priming. Finally, we demonstrate how our integrated reference can serve as a scaffold to map and improve the interpretation of additional scCUT&Tag datasets.


Asunto(s)
Cromatina , Histonas , Cromatina/genética , Inmunoprecipitación de Cromatina , ADN , Genómica , Histonas/genética , Histonas/metabolismo , Humanos
10.
Nature ; 603(7902): 728-735, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35296855

RESUMEN

The engineering of autologous patient T cells for adoptive cell therapies has revolutionized the treatment of several types of cancer1. However, further improvements are needed to increase response and cure rates. CRISPR-based loss-of-function screens have been limited to negative regulators of T cell functions2-4 and raise safety concerns owing to the permanent modification of the genome. Here we identify positive regulators of T cell functions through overexpression of around 12,000 barcoded human open reading frames (ORFs). The top-ranked genes increased the proliferation and activation of primary human CD4+ and CD8+ T cells and their secretion of key cytokines such as interleukin-2 and interferon-γ. In addition, we developed the single-cell genomics method OverCITE-seq for high-throughput quantification of the transcriptome and surface antigens in ORF-engineered T cells. The top-ranked ORF-lymphotoxin-ß receptor (LTBR)-is typically expressed in myeloid cells but absent in lymphocytes. When overexpressed in T cells, LTBR induced profound transcriptional and epigenomic remodelling, leading to increased T cell effector functions and resistance to exhaustion in chronic stimulation settings through constitutive activation of the canonical NF-κB pathway. LTBR and other highly ranked genes improved the antigen-specific responses of chimeric antigen receptor T cells and γδ T cells, highlighting their potential for future cancer-agnostic therapies5. Our results provide several strategies for improving next-generation T cell therapies by the induction of synthetic cell programmes.


Asunto(s)
Linfocitos T CD8-positivos , Neoplasias , Linfocitos T CD4-Positivos , Proliferación Celular , Humanos , Inmunoterapia Adoptiva , Activación de Linfocitos/genética
11.
Cell Genom ; 2(2)2022 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-35252946

RESUMEN

Modifications are present on many classes of RNA, including tRNA, rRNA, and mRNA. These modifications modulate diverse biological processes such as genetic recoding and mRNA export and folding. In addition, modifications can be introduced to RNA molecules using chemical probing strategies that reveal RNA structure and dynamics. Many methods exist to detect RNA modifications by short-read sequencing; however, limitations on read length inherent to short-read-based methods dissociate modifications from their native context, preventing single-molecule modification analysis. Here, we demonstrate direct RNA nanopore sequencing to detect endogenous and exogenous RNA modifications on long RNAs at the single-molecule level. We detect endogenous 2'-O-methyl and base modifications across E. coli and S. cerevisiae ribosomal RNAs as shifts in current signal and dwell times distally through interactions with the helicase motor protein. We further use the 2'-hydroxyl reactive SHAPE reagent acetylimidazole to probe RNA structure at the single-molecule level with readout by direct nanopore sequencing.

12.
JCI Insight ; 7(7)2022 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-35192548

RESUMEN

Clinical outcomes in colorectal cancer (CRC) correlate with T cell infiltrates, but the specific contributions of heterogenous T cell types remain unclear. To investigate the diverse function of T cells in CRC, we profiled 37,931 T cells from tumors and adjacent normal colon of 16 patients with CRC with respect to transcriptome, TCR sequence, and cell surface markers. Our analysis identified phenotypically and functionally distinguishable effector T cell types. We employed single-cell gene signatures from these T cell subsets to query the TCGA database to assess their prognostic significance. We found 2 distinct cytotoxic T cell types. GZMK+KLRG1+ cytotoxic T cells were enriched in CRC patients with good outcomes. GNLY+CD103+ cytotoxic T cells with a dysfunctional phenotype were not associated with good outcomes, despite coexpression of CD39 and CD103, markers that denote tumor reactivity. We found 2 distinct Treg subtypes associated with opposite outcomes. While total Tregs were associated with good outcomes, CD38+ Tregs were associated with bad outcomes independently of stage and possessed a highly suppressive phenotype, suggesting that they inhibit antitumor immunity in CRC. These findings highlight the potential utility of these subpopulations in predicting outcomes and support the potential for novel therapies directed at CD38+ Tregs or CD8+CD103+ T cells.


Asunto(s)
Neoplasias Colorrectales , Análisis de la Célula Individual , Linfocitos T CD8-positivos , Neoplasias Colorrectales/metabolismo , Humanos , Pronóstico , Subgrupos de Linfocitos T
13.
Immunity ; 55(3): 405-422.e11, 2022 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-35180378

RESUMEN

Developmental origins of dendritic cells (DCs) including conventional DCs (cDCs, comprising cDC1 and cDC2 subsets) and plasmacytoid DCs (pDCs) remain unclear. We studied DC development in unmanipulated adult mice using inducible lineage tracing combined with clonal DNA "barcoding" and single-cell transcriptome and phenotype analysis (CITE-seq). Inducible tracing of Cx3cr1+ hematopoietic progenitors in the bone marrow showed that they simultaneously produce all DC subsets including pDCs, cDC1s, and cDC2s. Clonal tracing of hematopoietic stem cells (HSCs) and of Cx3cr1+ progenitors revealed clone sharing between cDC1s and pDCs, but not between the two cDC subsets or between pDCs and B cells. Accordingly, CITE-seq analyses of differentiating HSCs and Cx3cr1+ progenitors identified progressive stages of pDC development including Cx3cr1+ Ly-6D+ pro-pDCs that were distinct from lymphoid progenitors. These results reveal the shared origin of pDCs and cDCs and suggest a revised scheme of DC development whereby pDCs share clonal relationship with cDC1s.


Asunto(s)
Linfocitos B , Células Dendríticas , Animales , Recuento de Células , Corea , Células Madre Hematopoyéticas , Ratones
14.
Blood ; 138(16): 1456-1464, 2021 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-34232982

RESUMEN

Cutaneous T-cell lymphoma (CTCL) is a heterogeneous group of mature T-cell neoplasms characterized by the accumulation of clonal malignant CD4+ T cells in the skin. The most common variant of CTCL, mycosis fungoides (MF ), is confined to the skin in early stages but can be accompanied by extracutaneous dissemination of malignant T cells to the blood and lymph nodes in advanced stages of disease. Sézary syndrome (SS), a leukemic form of disease, is characterized by significant blood involvement. Little is known about the transcriptional and genomic relationship between skin- and blood-residing malignant T cells in CTCL. To identify and interrogate malignant clones in matched skin and blood from patients with leukemic MF and SS, we combine T-cell receptor clonotyping with quantification of gene expression and cell surface markers at the single cell level. Our data reveal clonal evolution at a transcriptional and genetic level within the malignant populations of individual patients. We highlight highly consistent transcriptional signatures delineating skin- and blood-derived malignant T cells. Analysis of these 2 populations suggests that environmental cues, along with genetic aberrations, contribute to transcriptional profiles of malignant T cells. Our findings indicate that the skin microenvironment in CTCL promotes a transcriptional response supporting rapid malignant expansion, as opposed to the quiescent state observed in the blood, potentially influencing efficacy of therapies. These results provide insight into tissue-specific characteristics of cancerous cells and underscore the need to address the patients' individual malignant profiles at the time of therapy to eliminate all subclones.


Asunto(s)
Linfoma Cutáneo de Células T/patología , Neoplasias Cutáneas/patología , Células Cultivadas , Humanos , Linfoma Cutáneo de Células T/genética , Análisis de la Célula Individual , Neoplasias Cutáneas/genética , Transcriptoma , Células Tumorales Cultivadas
15.
Nat Biotechnol ; 39(10): 1246-1258, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34083792

RESUMEN

Recent technological advances have enabled massively parallel chromatin profiling with scATAC-seq (single-cell assay for transposase accessible chromatin by sequencing). Here we present ATAC with select antigen profiling by sequencing (ASAP-seq), a tool to simultaneously profile accessible chromatin and protein levels. Our approach pairs sparse scATAC-seq data with robust detection of hundreds of cell surface and intracellular protein markers and optional capture of mitochondrial DNA for clonal tracking, capturing three distinct modalities in single cells. ASAP-seq uses a bridging approach that repurposes antibody:oligonucleotide conjugates designed for existing technologies that pair protein measurements with single-cell RNA sequencing. Together with DOGMA-seq, an adaptation of CITE-seq (cellular indexing of transcriptomes and epitopes by sequencing) for measuring gene activity across the central dogma of gene regulation, we demonstrate the utility of systematic multi-omic profiling by revealing coordinated and distinct changes in chromatin, RNA and surface proteins during native hematopoietic differentiation and peripheral blood mononuclear cell stimulation and as a combinatorial decoder and reporter of multiplexed perturbations in primary T cells.


Asunto(s)
RNA-Seq/métodos , Análisis de la Célula Individual/métodos , Diferenciación Celular , Linaje de la Célula , Cromatina/genética , Cromatina/metabolismo , ADN Mitocondrial/genética , Epigenómica , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Hematopoyesis , Humanos , Leucocitos Mononucleares/citología , Leucocitos Mononucleares/metabolismo , Proteínas/genética , Proteínas/metabolismo , Linfocitos T/citología , Linfocitos T/metabolismo
16.
Cell ; 184(13): 3573-3587.e29, 2021 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-34062119

RESUMEN

The simultaneous measurement of multiple modalities represents an exciting frontier for single-cell genomics and necessitates computational methods that can define cellular states based on multimodal data. Here, we introduce "weighted-nearest neighbor" analysis, an unsupervised framework to learn the relative utility of each data type in each cell, enabling an integrative analysis of multiple modalities. We apply our procedure to a CITE-seq dataset of 211,000 human peripheral blood mononuclear cells (PBMCs) with panels extending to 228 antibodies to construct a multimodal reference atlas of the circulating immune system. Multimodal analysis substantially improves our ability to resolve cell states, allowing us to identify and validate previously unreported lymphoid subpopulations. Moreover, we demonstrate how to leverage this reference to rapidly map new datasets and to interpret immune responses to vaccination and coronavirus disease 2019 (COVID-19). Our approach represents a broadly applicable strategy to analyze single-cell multimodal datasets and to look beyond the transcriptome toward a unified and multimodal definition of cellular identity.


Asunto(s)
SARS-CoV-2/inmunología , Análisis de la Célula Individual/métodos , Células 3T3 , Animales , COVID-19/inmunología , Línea Celular , Perfilación de la Expresión Génica/métodos , Humanos , Inmunidad/inmunología , Leucocitos Mononucleares/inmunología , Linfocitos/inmunología , Ratones , Análisis de Secuencia de ARN/métodos , Transcriptoma/inmunología , Vacunación
17.
Front Immunol ; 12: 636720, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33815388

RESUMEN

Immune cell activation assays have been widely used for immune monitoring and for understanding disease mechanisms. However, these assays are typically limited in scope. A holistic study of circulating immune cell responses to different activators is lacking. Here we developed a cost-effective high-throughput multiplexed single-cell RNA-seq combined with epitope tagging (CITE-seq) to determine how classic activators of T cells (anti-CD3 coupled with anti-CD28) or monocytes (LPS) alter the cell composition and transcriptional profiles of peripheral blood mononuclear cells (PBMCs) from healthy human donors. Anti-CD3/CD28 treatment activated all classes of lymphocytes either directly (T cells) or indirectly (B and NK cells) but reduced monocyte numbers. Activated T and NK cells expressed senescence and effector molecules, whereas activated B cells transcriptionally resembled autoimmune disease- or age-associated B cells (e.g., CD11c, T-bet). In contrast, LPS specifically targeted monocytes and induced two main states: early activation characterized by the expression of chemoattractants and a later pro-inflammatory state characterized by expression of effector molecules. These data provide a foundation for future immune activation studies with single cell technologies (https://czi-pbmc-cite-seq.jax.org/).


Asunto(s)
Leucocitos Mononucleares/inmunología , Activación de Linfocitos/genética , Adulto , Anticuerpos Monoclonales/inmunología , Antígenos CD28/inmunología , Complejo CD3/inmunología , Células Cultivadas , Senescencia Celular/genética , Quimiotaxis/genética , Femenino , Perfilación de la Expresión Génica , Ensayos Analíticos de Alto Rendimiento , Humanos , Inmunización , Lipopolisacáridos/inmunología , Masculino , Análisis de la Célula Individual , Adulto Joven
18.
Elife ; 102021 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-33861199

RESUMEN

Simultaneous measurement of surface proteins and gene expression within single cells using oligo-conjugated antibodies offers high-resolution snapshots of complex cell populations. Signal from oligo-conjugated antibodies is quantified by high-throughput sequencing and is highly scalable and sensitive. We investigated the response of oligo-conjugated antibodies towards four variables: concentration, staining volume, cell number at staining, and tissue. We find that staining with recommended antibody concentrations causes unnecessarily high background and amount of antibody used can be drastically reduced without loss of biological information. Reducing staining volume only affects antibodies targeting abundant epitopes used at low concentrations and is counteracted by reducing cell numbers. Adjusting concentrations increases signal, lowers background, and reduces costs. Background signal can account for a major fraction of total sequencing and is primarily derived from antibodies used at high concentrations. This study provides new insight into titration response and background of oligo-conjugated antibodies and offers concrete guidelines to improve such panels.


Asunto(s)
Anticuerpos/aislamiento & purificación , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Proteínas de la Membrana/análisis , Análisis de la Célula Individual/métodos , Epítopos/aislamiento & purificación
19.
Nat Biotechnol ; 39(10): 1270-1277, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33927415

RESUMEN

CRISPR screens have been used to connect genetic perturbations with changes in gene expression and phenotypes. Here we describe a CRISPR-based, single-cell combinatorial indexing assay for transposase-accessible chromatin (CRISPR-sciATAC) to link genetic perturbations to genome-wide chromatin accessibility in a large number of cells. In human myelogenous leukemia cells, we apply CRISPR-sciATAC to target 105 chromatin-related genes, generating chromatin accessibility data for ~30,000 single cells. We correlate the loss of specific chromatin remodelers with changes in accessibility globally and at the binding sites of individual transcription factors (TFs). For example, we show that loss of the H3K27 methyltransferase EZH2 increases accessibility at heterochromatic regions involved in embryonic development and triggers expression of genes in the HOXA and HOXD clusters. At a subset of regulatory sites, we also analyze changes in nucleosome spacing following the loss of chromatin remodelers. CRISPR-sciATAC is a high-throughput, single-cell method for studying the effect of genetic perturbations on chromatin in normal and disease states.


Asunto(s)
Ensamble y Desensamble de Cromatina/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Perfilación de la Expresión Génica/métodos , RNA-Seq/métodos , Análisis de la Célula Individual/métodos , Sitios de Unión , Cromatina/genética , Cromatina/metabolismo , Epigenómica , Humanos , Leucemia Mieloide/genética , Nucleosomas/metabolismo , Elementos Reguladores de la Transcripción , Factores de Transcripción/metabolismo , Transposasas/metabolismo
20.
Nat Genet ; 53(3): 322-331, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33649593

RESUMEN

The expression of inhibitory immune checkpoint molecules, such as programmed death-ligand (PD-L)1, is frequently observed in human cancers and can lead to the suppression of T cell-mediated immune responses. Here, we apply expanded CRISPR-compatible (EC)CITE-seq, a technology that combines pooled CRISPR screens with single-cell mRNA and surface protein measurements, to explore the molecular networks that regulate PD-L1 expression. We also develop a computational framework, mixscape, that substantially improves the signal-to-noise ratio in single-cell perturbation screens by identifying and removing confounding sources of variation. Applying these tools, we identify and validate regulators of PD-L1 and leverage our multimodal data to identify both transcriptional and post-transcriptional modes of regulation. Specifically, we discover that the Kelch-like protein KEAP1 and the transcriptional activator NRF2 mediate the upregulation of PD-L1 after interferon (IFN)-γ stimulation. Our results identify a new mechanism for the regulation of immune checkpoints and present a powerful analytical framework for the analysis of multimodal single-cell perturbation screens.


Asunto(s)
Antígeno B7-H1/genética , Proteínas de Punto de Control Inmunitario/fisiología , Análisis de la Célula Individual/métodos , Antígeno B7-2/metabolismo , Antígeno B7-H1/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Proteínas Cullin/genética , Proteínas Cullin/metabolismo , Humanos , Proteína 1 Asociada A ECH Tipo Kelch/genética , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Proteína 2 Ligando de Muerte Celular Programada 1/metabolismo , Receptores de Interferón/genética , Reproducibilidad de los Resultados , Relación Señal-Ruido , Células THP-1 , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...