Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 13(1)2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38202424

RESUMEN

The amalgamation of mineral and targeted bacterial preparations represents a new generation of agricultural technology. Inoculation with combined preparations of microorganisms is more effective than inoculation with a single microorganism in stimulating plant growth by providing a more balanced diet for various crops. In this work, the effect of inoculation of 20 consortium variants on the yield indicators of three crops (wheat, buckwheat, corn) and the soil microbiome in the open field was investigated. The soil microbiome was defined by 16S rRNA sequences through NGS. The species richness of the soil microbial community (alpha diversity) was similar for all studied samples. A beta-diversity analysis revealed that the microbial diversity of three soil samples (C.bw, F.bw and Soil.bw) differed significantly from all others. At the phylum level, the number of Acidobacteriota and Firmicutes in these samples was increased. For the combination "Consortium C (Rothia endophytic GMG9 and Azotobacter chroococcum GMG39)-buckwheat", a systemic positive improvement in all growth and yield indicators was observed. The soil of the site where buckwheat grew, inoculated by Consortium C, contained significantly more available phosphorus than all other soil samples. Such results can be explained both by the direct action of a consortium of phosphate-immobilizing and nitrogen-fixing bacteria and acidification of the medium due to an increase in phylum Acidobacteriota bacteria in the soil.

2.
Mitochondrial DNA B Resour ; 5(1): 414-416, 2020 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-33366582

RESUMEN

Coregonid fishes are among the most successful groups in the subarctic, boreal, and subalpine fresh waters of the northern hemisphere. Limnetic-benthic sympatric species-pairs from two different evolutionary lineages, the North American lake whitefish (Coregonus clupeaformis species complex), and the European whitefish (Coregonus lavaretus species complex), are becoming the subject of close attention to explore the role of natural selection during the ecological speciation. Baikal endemic coregonids, limnetic omul (Coregonus migratorius), and benthic lacustrine whitefish (Coregonus baicalensis) are the only representatives of another unique lineage that has not left the lake since the divergence from the two above. Due to Pleistocene oscillations sympatric limnetic-benthic divergence has been replicated here many times within the same water body over a long geological period in contrast to both Europe and America where sympatric species-pairs are the results of post-glacial secondary-contacts between glacial isolates during the Late Pleistocene on the territory of each continent. Mitochondrial genomes encode genes that are essential for respiration and metabolism. Data on complete mitogenomes of Baikal endemic coregonids provided here will complement ongoing investigations on energy metabolism as the main biological function involved in the divergence between limnetic and benthic whitefish.

3.
Fungal Biol ; 123(12): 927-935, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31733735

RESUMEN

Strains of entomopathogenic fungi may have substantial differences in their final stages of mycosis. Insect cadavers are usually overgrown with mycelium after colonization of the insect body, but in many cases, bacterial decomposition of the colonized hosts occurs. We used two Metarhizium robertsii strains in the work: Mak-1 (cadavers become overgrown with mycelium and conidia) and P-72 (cadavers decay after fungal colonization). We conducted a comparative analysis of gut and cadaver microbiota in Colorado potato beetle larvae using 16S rRNA gene sequencing after infection with these strains. In addition, we estimated the content of different forms of nitrogen in cadavers and the influence of cadavers on the growth of Solanum lycopersicum on sand substrates under laboratory conditions. It was shown that infections did not lead to a significant shift in the midgut bacterial communities of infected insects compared to those of untreated insects. Importantly, bacterial communities were similar in both types of cadaver, with predominantly enterobacteria. Decomposing cadavers (P-72) were characterized by increased nitrate and ammonium, and they had a stronger growth-promoting effect on plants compared to cadavers overgrown with mycelium and conidia (Mak-1). We also estimated the colonization and growth of plants after treatment with conidia of both strains cultivated on artificial medium. Both cultures successfully colonized plants, but strain P-72 showed stronger growth promotion than Mak-1. We propose that the use of deviant strains that are unable to sporulate on cadavers leads to a faster (though only passive) flow of nitrogen from killed insects to plants.


Asunto(s)
Bacterias/crecimiento & desarrollo , Bacterias/metabolismo , Escarabajos/microbiología , Microbiota , Cambios Post Mortem , Amoníaco/análisis , Animales , Bacterias/clasificación , Bacterias/genética , Cadáver , Análisis por Conglomerados , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Metarhizium/crecimiento & desarrollo , Nitratos/análisis , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
4.
Hum Mol Genet ; 27(16): 2874-2892, 2018 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-29860433

RESUMEN

Impaired glucose metabolism, decreased levels of thiamine and its phosphate esters, and reduced activity of thiamine-dependent enzymes, such as pyruvate dehydrogenase, alpha-ketoglutarate dehydrogenase and transketolase occur in Alzheimer's disease (AD). Thiamine deficiency exacerbates amyloid beta (Aß) deposition, tau hyperphosphorylation and oxidative stress. Benfotiamine (BFT) rescued cognitive deficits and reduced Aß burden in amyloid precursor protein (APP)/PS1 mice. In this study, we examined whether BFT confers neuroprotection against tau phosphorylation and the generation of neurofibrillary tangles (NFTs) in the P301S mouse model of tauopathy. Chronic dietary treatment with BFT increased lifespan, improved behavior, reduced glycated tau, decreased NFTs and prevented death of motor neurons. BFT administration significantly ameliorated mitochondrial dysfunction and attenuated oxidative damage and inflammation. We found that BFT and its metabolites (but not thiamine) trigger the expression of Nrf2/antioxidant response element (ARE)-dependent genes in mouse brain as well as in wild-type but not Nrf2-deficient fibroblasts. Active metabolites were more potent in activating the Nrf2 target genes than the parent molecule BFT. Docking studies showed that BFT and its metabolites (but not thiamine) bind to Keap1 with high affinity. These findings demonstrate that BFT activates the Nrf2/ARE pathway and is a promising therapeutic agent for the treatment of diseases with tau pathology, such as AD, frontotemporal dementia and progressive supranuclear palsy.


Asunto(s)
Elementos de Respuesta Antioxidante/genética , Factor 2 Relacionado con NF-E2/genética , Agregación Patológica de Proteínas/tratamiento farmacológico , Tauopatías/tratamiento farmacológico , Tiamina/análogos & derivados , Péptidos beta-Amiloides/genética , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/patología , Modelos Animales de Enfermedad , Humanos , Proteína 1 Asociada A ECH Tipo Kelch/genética , Ratones , Ratones Transgénicos , Neuroprotección/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Agregación Patológica de Proteínas/genética , Agregación Patológica de Proteínas/patología , Transducción de Señal/efectos de los fármacos , Tauopatías/genética , Tauopatías/fisiopatología , Tiamina/administración & dosificación , Proteínas tau/genética
5.
Biochimie ; 147: 46-54, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29289682

RESUMEN

L-Ascorbate (L-Asc), but not D-isoascorbate (D-Asc) and N-acetylcysteine (NAC) suppress HIF1 ODD-luc reporter activation induced by various inhibitors of HIF prolyl hydroxylase (PHD). The efficiency of suppression by L-Asc was sensitive to the nature of HIF PHD inhibitor chosen for reporter activation. In particular, the inhibitors developed to compete with alpha-ketoglutarate (αKG), were less sensitive to suppression by the physiological range of L-Asc (40-100 µM) than those having a strong iron chelation motif. Challenging those HIF activators in the reporter system with D-Asc demonstrated that the D-isomer, despite exhibiting the same reducing potency with respect to ferric iron, had almost no effect compared to L-Asc. Similarly, no effect on reporter activation was observed with cell-permeable reducing agent NAC up to 1 mM. Docking of L-Asc and D-Asc acid into the HIF PHD2 crystal structure showed interference of Tyr310 with respect to D-Asc. This suggests that L-Asc is not merely a reducing agent preventing enzyme inactivation. Rather, the overall results identify L-Asc as a co-substrate of HIF PHD that may compete for the binding site of αKG in the enzyme active center. This conclusion is in agreement with the results obtained recently in cell-based systems for TET enzymes and jumonji histone demethylases, where L-Asc has been proposed to act as a co-substrate and not as a reducing agent preventing enzyme inactivation.


Asunto(s)
Ácido Ascórbico/metabolismo , Prolil Hidroxilasas/metabolismo , Prolil Hidroxilasas/farmacología , Ácido Ascórbico/química , Línea Celular Tumoral , Humanos , Inhibidores de Prolil-Hidroxilasa/farmacología , Unión Proteica , Estereoisomerismo
6.
ACS Chem Neurosci ; 9(5): 894-900, 2018 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-29338172

RESUMEN

Activation of HIF-1α and Nrf2 is a primary component of cellular response to oxidative stress, and activation of HIF-1α and Nrf2 provides neuroprotection in models of neurodegenerative disorders, including ischemic stroke, Alzheimer's and Parkinson's diseases. Screening a library of CNS-targeted drugs using novel reporters for HIF-1α and Nrf2 elevation in neuronal cells revealed histone deacetylase (HDAC) inhibitors as potential activators of these pathways. We report the identification of phenylhydroxamates as single agents exhibiting tripartite inhibition of HDAC6, inhibition of HIF-1 prolyl hydroxylase (PHD), and activation of Nrf2. Two superior tripartite agents, ING-6 and ING-66, showed neuroprotection against various cellular insults, associated with stabilization of both Nrf2 and HIF-1, and expression of their respective target genes in vitro and in vivo. Discovery of the innate ability of phenylhydroxamate HDAC inhibitors to activate Nrf2 and HIF provides a novel route to multifunctional neuroprotective agents and cautions against HDAC6 selective inhibitors as chemical probes of specific HDAC isoform function.


Asunto(s)
Histona Desacetilasa 6/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo/efectos de los fármacos , Inhibidores de Histona Desacetilasas/farmacología , Humanos , Hidroxilaminas/farmacología , Enfermedades Neurodegenerativas/tratamiento farmacológico , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología
7.
J Neurosci ; 36(23): 6332-51, 2016 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-27277809

RESUMEN

UNLABELLED: A promising approach to neurotherapeutics involves activating the nuclear-factor-E2-related factor 2 (Nrf2)/antioxidant response element signaling, which regulates expression of antioxidant, anti-inflammatory, and cytoprotective genes. Tecfidera, a putative Nrf2 activator, is an oral formulation of dimethylfumarate (DMF) used to treat multiple sclerosis. We compared the effects of DMF and its bioactive metabolite monomethylfumarate (MMF) on Nrf2 signaling and their ability to block 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced experimental Parkinson's disease (PD). We show that in vitro DMF and MMF activate the Nrf2 pathway via S-alkylation of the Nrf2 inhibitor Keap1 and by causing nuclear exit of the Nrf2 repressor Bach1. Nrf2 activation by DMF but not MMF was associated with depletion of glutathione, decreased cell viability, and inhibition of mitochondrial oxygen consumption and glycolysis rates in a dose-dependent manner, whereas MMF increased these activities in vitro However, both DMF and MMF upregulated mitochondrial biogenesis in vitro in an Nrf2-dependent manner. Despite the in vitro differences, both DMF and MMF exerted similar neuroprotective effects and blocked MPTP neurotoxicity in wild-type but not in Nrf2 null mice. Our data suggest that DMF and MMF exhibit neuroprotective effects against MPTP neurotoxicity because of their distinct Nrf2-mediated antioxidant, anti-inflammatory, and mitochondrial functional/biogenetic effects, but MMF does so without depleting glutathione and inhibiting mitochondrial and glycolytic functions. Given that oxidative damage, neuroinflammation, and mitochondrial dysfunction are all implicated in PD pathogenesis, our results provide preclinical evidence for the development of MMF rather than DMF as a novel PD therapeutic. SIGNIFICANCE STATEMENT: Almost two centuries since its first description by James Parkinson, Parkinson's disease (PD) remains an incurable disease with limited symptomatic treatment. The current study provides preclinical evidence that a Food and Drug Administration-approved drug, dimethylfumarate (DMF), and its metabolite monomethylfumarate (MMF) can block nigrostriatal dopaminergic neurodegeneration in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of PD. We elucidated mechanisms by which DMF and its active metabolite MMF activates the redox-sensitive transcription factor nuclear-factor-E2-related factor 2 (Nrf2) to upregulate antioxidant, anti-inflammatory, mitochondrial biosynthetic and cytoprotective genes to render neuroprotection via distinct S-alkylating properties and depletion of glutathione. Our data suggest that targeting Nrf2-mediated gene transcription using MMF rather than DMF is a promising approach to block oxidative stress, neuroinflammation, and mitochondrial dysfunction for therapeutic intervention in PD while minimizing side effects.


Asunto(s)
Fumaratos/uso terapéutico , Factor 2 Relacionado con NF-E2/metabolismo , Fármacos Neuroprotectores/uso terapéutico , Trastornos Parkinsonianos/inducido químicamente , Trastornos Parkinsonianos/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/farmacología , Animales , Antígenos CD/metabolismo , Línea Celular Transformada , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Fumaratos/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Humanos , Maleatos/farmacología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Factor 2 Relacionado con NF-E2/genética , Trastornos Parkinsonianos/prevención & control , Ratas , Tirosina/análogos & derivados , Tirosina/farmacología
8.
Aging Dis ; 7(6): 745-762, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28053825

RESUMEN

Flavonoids are known to trigger the intrinsic genetic adaptive programs to hypoxic or oxidative stress via estrogen receptor engagement or upstream kinase activation. To reveal specific structural requirements for direct stabilization of the transcription factors responsible for triggering the antihypoxic and antioxidant programs, we studied flavones, isoflavones and catechols including dihydroxybenzoate, didox, levodopa, and nordihydroguaiaretic acid (NDGA), using novel luciferase-based reporters specific for the first step in HIF1 or Nrf2 protein stabilization. Distinct structural requirements for either transcription factor stabilization have been found: as expected, these requirements for activation of HIF ODD-luc reporter correlate with in silico binding to HIF prolyl hydroxylase. By contrast, stabilization of Nrf2 requires the presence of 3,4-dihydroxy- (catechol) groups. Thus, only some but not all flavonoids are direct activators of the hypoxic and antioxidant genetic programs. NDGA from the Creosote bush resembles the best flavonoids in their ability to directly stabilize HIF1 and Nrf2 and is superior with respect to LOX inhibition thus favoring this compound over others. Given much higher bioavailability and stability of NDGA than any flavonoid, NDGA has been tested in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-animal model of Parkinson's Disease and demonstrated neuroprotective effects.

9.
J Neurosci Res ; 91(8): 1066-75, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23456821

RESUMEN

Hypoxia-inducible factor (HIF) mediates a broad, conserved adaptive response to hypoxia, and the HIF pathway is a potential therapeutic target in cerebral ischemia. This study investigated the mechanism by which in vitro ischemia (oxygen-glucose deprivation; OGD) affects canonical hypoxic HIF-1α stabilization. We validated the use of a reporter containing the oxygen-dependent degradation domain of HIF-1α fused to firefly luciferase (ODD-luc) to monitor quantitatively distinct biochemical events leading to hypoxic HIF-1α expression or stabilization in a human neuroblastoma cell line (SH-SY5Y). When OGD was imposed following a 2-hr hypoxic stabilization of ODD-luc, the levels of the reporter were reduced, consistent with prior models proposing that OGD enhances HIF prolylhydroxylase (PHD) activity. Surprisingly, PHD inhibitors and proteasome inhibitors do not stabilize ODD-luc in OGD. Furthermore, OGD does not affect the half-life of ODD-luc protein following hypoxia, suggesting that OGD abrogates hypoxic HIF-1α induction by reducing HIF-1α synthesis rather than by enhancing its degradation. We observed ATP depletion under OGD vs. hypoxia and propose that ATP depletion enhances translational suppression, overcoming the selective synthesis of HIF concurrent with global decreases in protein synthesis in hypoxia. Taken together, these findings biochemically characterize a practical reporter for monitoring HIF-1α levels and support a novel model for HIF regulation in an in vitro model of human ischemia.


Asunto(s)
Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Neuronas/metabolismo , Hipoxia de la Célula , Línea Celular , Humanos , Hipoxia-Isquemia Encefálica/metabolismo , Immunoblotting
10.
Free Radic Biol Med ; 62: 26-36, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23376032

RESUMEN

Neurologic conditions including stroke, Alzheimer disease, Parkinson disease, and Huntington disease are leading causes of death and long-term disability in the United States, and efforts to develop novel therapeutics for these conditions have historically had poor success in translating from bench to bedside. Hypoxia-inducible factor (HIF)-1α mediates a broad, evolutionarily conserved, endogenous adaptive program to hypoxia, and manipulation of components of the HIF pathway is neuroprotective in a number of human neurological diseases and experimental models. In this review, we discuss molecular components of one aspect of hypoxic adaptation in detail and provide perspective on which targets within this pathway seem to be ripest for preventing and repairing neurodegeneration. Further, we highlight the role of HIF prolyl hydroxylases as emerging targets for the salutary effects of metal chelators on ferroptosis in vitro as well in animal models of neurological diseases.


Asunto(s)
Factor 1 Inducible por Hipoxia/metabolismo , Fármacos Neuroprotectores/uso terapéutico , Accidente Cerebrovascular/tratamiento farmacológico , Antioxidantes/metabolismo , Antioxidantes/uso terapéutico , Quelantes/metabolismo , Humanos , Hipoxia , Factor 1 Inducible por Hipoxia/antagonistas & inhibidores , Metales/metabolismo , Terapia Molecular Dirigida , Fármacos Neuroprotectores/metabolismo , Estrés Oxidativo , Accidente Cerebrovascular/enzimología , Accidente Cerebrovascular/patología
11.
Antioxid Redox Signal ; 18(2): 139-57, 2013 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-22746536

RESUMEN

UNLABELLED: Although the etiology of Parkinson's disease (PD) remains unclear, ample empirical evidence suggests that oxidative stress is a major player in the development of PD and in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) neurotoxicity. Nuclear factor E2-related factor 2 (Nrf2) is a redox-sensitive transcription factor that upregulates a battery of antioxidant response element (ARE)-driven antioxidative and cytoprotective genes that defend against oxidative stress. AIMS: We evaluated whether the strategy of activation of Nrf2 and its downstream network of cytoprotective genes with small molecule synthetic triterpenoids (TP) attenuate MPTP-induced PD in mice. RESULTS: We show that synthetic TP are thus far the most potent and direct activators of the Nrf2 pathway using a novel Neh2-luciferase reporter. They upregulate several cytoprotective genes, including those involved in glutathione biosynthesis in vitro. Oral administration of TP that were structurally modified to penetrate the brain-induced messenger RNA and protein levels for a battery of Nrf2-dependent cytoprotective genes reduced MPTP-induced oxidative stress and inflammation, and ameliorated dopaminergic neurotoxicity in mice. The neuroprotective effect of these TP against MPTP neurotoxicity was dependent on Nrf2, since treatment with TP in Nrf2 knockout mice failed to block against MPTP neurotoxicity and induce Nrf2-dependent cytoprotective genes. INNOVATION: Extremely potent synthetic TP that are direct activators of the Nrf2 pathway block dopaminergic neurodegeneration in the MPTP mouse model of PD. CONCLUSION: Our results indicate that activation of Nrf2/antioxidant response element (ARE) signaling by synthetic TP is directly associated with their neuroprotective effects against MPTP neurotoxicity and suggest that targeting the Nrf2/ARE pathway is a promising approach for therapeutic intervention in PD.


Asunto(s)
Modelos Animales de Enfermedad , Dopamina/metabolismo , Intoxicación por MPTP/complicaciones , Factor 2 Relacionado con NF-E2/genética , Enfermedad de Parkinson/metabolismo , Transcripción Genética/efectos de los fármacos , Triterpenos/farmacología , Administración Oral , Animales , Ratones , Ratones Noqueados , Enfermedad de Parkinson/etiología , Enfermedad de Parkinson/genética , Transcripción Genética/fisiología , Triterpenos/administración & dosificación
12.
Ann Neurol ; 73(1): 129-35, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23192915

RESUMEN

Targeting newly identified damage pathways in the ischemic brain can help to circumvent the currently severe limitations of acute stroke therapy. Here we show that the activity of 12/15-lipoxygenase was increased in the ischemic mouse brain, and 12/15-lipoxygenase colocalized with a marker for oxidized lipids, MDA2. This colocalization was also detected in the brain of 2 human stroke patients, where it also coincided with increased apoptosis-inducing factor. A novel inhibitor of 12/15-lipoxygenase, LOXBlock-1, protected neuronal HT22 cells against oxidative stress. In a mouse model of transient focal ischemia, the inhibitor reduced infarct sizes both 24 hours and 14 days poststroke, with improved behavioral parameters. Even when treatment was delayed until at least 4 hours after onset of ischemia, LOXBlock-1 was protective. Furthermore, it reduced tissue plasminogen activator-associated hemorrhage in a clot model of ischemia/reperfusion. This study establishes inhibition of 12/15-lipoxygenase as a viable strategy for first-line stroke treatment.


Asunto(s)
Araquidonato 12-Lipooxigenasa/metabolismo , Araquidonato 15-Lipooxigenasa/metabolismo , Inhibidores de la Lipooxigenasa/uso terapéutico , Accidente Cerebrovascular/tratamiento farmacológico , Accidente Cerebrovascular/enzimología , Anciano , Animales , Femenino , Humanos , Inhibidores de la Lipooxigenasa/administración & dosificación , Masculino , Ratones , Persona de Mediana Edad , Resultado del Tratamiento
13.
Chem Biol ; 18(6): 752-65, 2011 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-21700211

RESUMEN

The NF-E2-related factor 2 (Nrf2) is a key transcriptional regulator of antioxidant defense and detoxification. To directly monitor stabilization of Nrf2, we fused its Neh2 domain, responsible for the interaction with its nucleocytoplasmic regulator, Keap1, to firefly luciferase (Neh2-luciferase). We show that Neh2 domain is sufficient for recognition, ubiquitination, and proteasomal degradation of Neh2-luciferase fusion protein. The Neh2-luc reporter system allows direct monitoring of the adaptive response to redox stress and classification of drugs based on the time course of reporter activation. The reporter was used to screen the Spectrum library of 2000 biologically active compounds to identify activators of Nrf2. The most robust and yet nontoxic Nrf2 activators found--nordihydroguaiaretic acid, fisetin, and gedunin--induced astrocyte-dependent neuroprotection from oxidative stress via an Nrf2-dependent mechanism.


Asunto(s)
Genes Reporteros , Ensayos Analíticos de Alto Rendimiento , Factor 2 Relacionado con NF-E2/metabolismo , Sitios de Unión , Línea Celular Tumoral , Simulación por Computador , Flavonoides/química , Flavonoides/farmacología , Flavonoles , Humanos , Péptidos y Proteínas de Señalización Intracelular/antagonistas & inhibidores , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch , Cinética , Limoninas/química , Limoninas/farmacología , Luciferasas/genética , Luciferasas/metabolismo , Masoprocol/química , Masoprocol/farmacología , Factor 2 Relacionado con NF-E2/agonistas , Factor 2 Relacionado con NF-E2/genética , Estrés Oxidativo , Estructura Terciaria de Proteína , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Proteínas Recombinantes de Fusión/agonistas , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Relación Estructura-Actividad , Ubiquitinación
14.
Proc Natl Acad Sci U S A ; 107(40): 17385-90, 2010 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-20855618

RESUMEN

Neurons rely on their metabolic coupling with astrocytes to combat oxidative stress. The transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) appears important for astrocyte-dependent neuroprotection from oxidative insults. Indeed, Nrf2 activators are effective in stroke, Parkinson disease, and Huntington disease models. However, key endogenous signals that initiate adaptive neuroprotective cascades in astrocytes, including activation of Nrf2-mediated gene expression, remain unclear. Hydrogen peroxide (H(2)O(2)) plays an important role in cell signaling and is an attractive candidate mediator of adaptive responses in astrocytes. Here we determine (i) the significance of H(2)O(2) in promoting astrocyte-dependent neuroprotection from oxidative stress, and (ii) the relevance of H(2)O(2) in inducing astrocytic Nrf2 activation. To control the duration and level of cytoplasmic H(2)O(2) production in astrocytes cocultured with neurons, we heterologously expressed the H(2)O(2)-producing enzyme Rhodotorula gracilis D-amino acid oxidase (rgDAAO) selectively in astrocytes. Exposure of rgDAAO-astrocytes to D-alanine lead to the concentration-dependent generation of H(2)O(2). Seven hours of low-level H(2)O(2) production (∼3.7 nmol·min·mg protein) in astrocytes protected neurons from oxidative stress, but higher levels (∼130 nmol·min·mg protein) were neurotoxic. Neuroprotection occurred without direct neuronal exposure to astrocyte-derived H(2)O(2), suggesting a mechanism specific to astrocytic intracellular signaling. Nrf2 activation mimicked the effect of astrocytic H(2)O(2) yet H(2)O(2)-induced protection was independent of Nrf2. Astrocytic protein tyrosine phosphatase inhibition also protected neurons from oxidative death, representing a plausible mechanism for H(2)O(2)-induced neuroprotection. These findings demonstrate the utility of rgDAAO for spatially and temporally controlling intracellular H(2)O(2) concentrations to uncover unique astrocyte-dependent neuroprotective mechanisms.


Asunto(s)
Astrocitos/metabolismo , Peróxido de Hidrógeno/metabolismo , Neuronas/metabolismo , Fármacos Neuroprotectores/metabolismo , Oxidantes/metabolismo , Estrés Oxidativo/fisiología , Animales , Astrocitos/citología , Células Cultivadas , Técnicas de Cocultivo , D-Aminoácido Oxidasa/metabolismo , Glutatión/metabolismo , Análisis por Micromatrices , Factor 2 Relacionado con NF-E2/metabolismo , Neuronas/citología , Ratas , Rhodotorula/enzimología
15.
Chem Biol ; 17(4): 380-91, 2010 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-20416509

RESUMEN

Small molecules inhibiting hypoxia inducible factor (HIF) prolyl hydroxylases (PHDs) are the focus of drug development efforts directed toward the treatment of ischemia and metabolic imbalance. A cell-based reporter produced by fusing HIF-1 alpha oxygen degradable domain (ODD) to luciferase was shown to work as a capture assay monitoring stability of the overexpressed luciferase-labeled HIF PHD substrate under conditions more physiological than in vitro test tubes. High throughput screening identified novel catechol and oxyquinoline pharmacophores with a "branching motif" immediately adjacent to a Fe-binding motif that fits selectively into the HIF PHD active site in in silico models. In accord with their structure-activity relationship in the primary screen, the best "hits" stabilize HIF1 alpha, upregulate known HIF target genes in a human neuronal line, and exert neuroprotective effects in established model of oxidative stress in cortical neurons.


Asunto(s)
Catecoles/farmacología , Dioxigenasas/antagonistas & inhibidores , Ensayos Analíticos de Alto Rendimiento/métodos , Hipoxia/tratamiento farmacológico , Proteínas Nucleares/antagonistas & inhibidores , Oxiquinolina/farmacología , Catecoles/química , Línea Celular Tumoral , Dioxigenasas/química , Dioxigenasas/metabolismo , Humanos , Hidrazinas/química , Hidrazinas/farmacología , Factor 1 Inducible por Hipoxia/metabolismo , Prolina Dioxigenasas del Factor Inducible por Hipoxia , Modelos Moleculares , Fármacos Neuroprotectores/química , Fármacos Neuroprotectores/farmacología , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Estrés Oxidativo/efectos de los fármacos , Oxiquinolina/química , Procolágeno-Prolina Dioxigenasa , Relación Estructura-Actividad , Tiadiazoles/química , Tiadiazoles/farmacología
16.
Ann N Y Acad Sci ; 1147: 383-94, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19076458

RESUMEN

A major challenge for neurological therapeutics is the development of small molecule drugs that can activate a panoply of downstream pathways without toxicity. Over the past decade our group has shown that a family of enzymes that regulate posttranscriptional and transcriptional adaptive responses to hypoxia are viable targets for neuronal protection and repair. The family is a group of iron, oxygen, and 2-oxoglutarate-dependent dioxygenases, known as the HIF prolyl 4-hydroxylases (HIF PHDs). We have previously shown that pluripotent protection offered by iron chelators is mediated, in part, via the ability of these agents to inhibit the HIF PHDs. Our group and others have implicated the transcriptional activator HIF-1 in some of the salutary effects of iron chelation-induced PHD inhibition. While some iron chelators are currently employed in humans for conditions such as hemochromatosis, the diverse utilization of iron in physiological processes in the brain makes the development of HIF activators that do not bind iron a high priority. Here we report the development of a high throughput screen to develop novel HIF activators and/or PHD inhibitors for therapeutic use in the central nervous system (CNS). We show that tilorone, a low-molecular weight, antiviral, immunomodulatory agent is the most effective activator of the HIF pathway in a neuronal line. We also show that tilorone enhances HIF protein levels and increases the expression of downstream target genes independent of iron chelation and HIF PHD inhibition in vitro. We further demonstrate that tilorone can activate an HIF-regulated reporter gene in the CNS. These studies confirm that tilorone can penetrate the blood-brain barrier to activate HIF in the CNS. As expected from these findings, we show that tilorone provides effective prophylaxis against permanent ischemic stroke and traumatic spinal cord injury in male rodents. Altogether these findings identify tilorone as a novel and potent modulator of HIF-mediated gene expression in neurons with neuroprotective properties.


Asunto(s)
Expresión Génica/efectos de los fármacos , Subunidad alfa del Factor 1 Inducible por Hipoxia/agonistas , Traumatismos de la Médula Espinal/prevención & control , Accidente Cerebrovascular/prevención & control , Tilorona/farmacología , Animales , Células Cultivadas , Masculino , Ratas , Ratas Sprague-Dawley
17.
J Mol Med (Berl) ; 85(12): 1331-8, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18043901

RESUMEN

The brain demands oxygen and glucose to fulfill its roles as the master regulator of body functions as diverse as bladder control and creative thinking. Chemical and electrical transmission in the nervous system is rapidly disrupted in stroke as a result of hypoxia and hypoglycemia. Despite being highly evolved in its architecture, the human brain appears to utilize phylogenetically conserved homeostatic strategies to combat hypoxia and ischemia. Specifically, several converging lines of inquiry have demonstrated that the transcription factor hypoxia-inducible factor-1 (HIF1-1) mediates the activation of a large cassette of genes involved in adaptation to hypoxia in surviving neurons after stroke. Accordingly, pharmacological or molecular approaches that engage hypoxic adaptation at the point of one of its sensors (e.g., inhibition of HIF prolyl 4 hydroxylases) leads to profound sparing of brain tissue and enhanced recovery of function. In this review, we discuss the potential mechanisms that could subserve protective and restorative effects of augmenting hypoxic adaptation in the brain. The strategy appears to involve HIF-dependent and HIF-independent pathways and more than 70 genes and proteins activated transcriptionally and post-transcriptionally that can act at cellular, local, and system levels to compensate for oxygen insufficiency. The breadth and depth of this homeostatic program offers a hopeful alternative to the current pessimism towards stroke therapeutics.


Asunto(s)
Encéfalo/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Hipoxia Encefálica/tratamiento farmacológico , Fármacos Neuroprotectores/farmacología , Oxígeno/metabolismo , Accidente Cerebrovascular/tratamiento farmacológico , Adaptación Fisiológica , Animales , Encéfalo/metabolismo , Encéfalo/patología , Encéfalo/fisiopatología , Inhibidores Enzimáticos/uso terapéutico , Humanos , Hipoxia Encefálica/metabolismo , Hipoxia Encefálica/patología , Hipoxia Encefálica/fisiopatología , Factor 1 Inducible por Hipoxia/metabolismo , Fármacos Neuroprotectores/uso terapéutico , Estrés Oxidativo/efectos de los fármacos , Procolágeno-Prolina Dioxigenasa/antagonistas & inhibidores , Procolágeno-Prolina Dioxigenasa/metabolismo , Transducción de Señal/efectos de los fármacos , Accidente Cerebrovascular/metabolismo , Accidente Cerebrovascular/patología , Accidente Cerebrovascular/fisiopatología
18.
Reproduction ; 132(1): 67-77, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16816334

RESUMEN

Spo11, a meiosis-specific protein, introduces double-strand breaks on chromosomal DNA and initiates meiotic recombination in a wide variety of organisms. Mouse null Spo11 spermatocytes fail to synapse chromosomes and progress beyond the zygotene stage of meiosis. We analyzed gene expression profiles in Spo11(-/ -)adult and juvenile wild-type testis to describe genes expressed before and after the meiotic arrest resulting from the knocking out of Spo11. These genes were characterized using the Gene Ontology data base. To focus on genes involved in meiosis, we performed comparative gene expression analysis of Spo11(-/ -)and wild-type testes from 15-day mice, when spermatocytes have just entered pachytene. We found that the knockout of Spo11 causes dramatic changes in the level of expression of genes that participate in meiotic recombination (Hop2, Brca2, Mnd1, FancG) and in the meiotic checkpoint (cyclin B2, Cks2), but does not affect genes encoding protein components of the synaptonemal complex. Finally, we discovered unknown genes that are affected by the disruption of the Spo11 gene and therefore may be specifically involved in meiosis and spermatogenesis.


Asunto(s)
Esterasas/genética , Perfilación de la Expresión Génica/métodos , Análisis de Secuencia por Matrices de Oligonucleótidos , Espermatocitos/citología , Testículo/metabolismo , Animales , Endodesoxirribonucleasas , Expresión Génica , Masculino , Meiosis/genética , Ratones , Ratones Noqueados , Profase , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Maduración Sexual , Espermatogénesis/genética
19.
Nat Genet ; 36(6): 642-6, 2004 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15156144

RESUMEN

Sex chromosomes are subject to sex-specific selective evolutionary forces. One model predicts that genes with sex-biased expression should be enriched on the X chromosome. In agreement with Rice's hypothesis, spermatogonial genes are over-represented on the X chromosome of mice and sex- and reproduction-related genes are over-represented on the human X chromosome. Male-biased genes are under-represented on the X chromosome in worms and flies, however. Here we show that mouse spermatogenesis genes are relatively under-represented on the X chromosome and female-biased genes are enriched on it. We used Spo11(-/-) mice blocked in spermatogenesis early in meiosis to evaluate the temporal pattern of gene expression in sperm development. Genes expressed before the Spo11 block are enriched on the X chromosome, whereas those expressed later in spermatogenesis are depleted. Inactivation of the X chromosome in male meiosis may be a universal driving force for X-chromosome demasculinization.


Asunto(s)
Meiosis/genética , Cromosoma X/genética , Animales , Compensación de Dosificación (Genética) , Endodesoxirribonucleasas , Esterasas/deficiencia , Esterasas/genética , Femenino , Expresión Génica , Genoma , Masculino , Ratones , Ratones Noqueados , Modelos Genéticos , Embarazo , Espermatogénesis/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...