Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 281
Filtrar
1.
J Neurosci Res ; 102(3): e25295, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38515329

RESUMEN

Alzheimer's disease (AD) is a progressive neurodegenerative disease and the most common cause of dementia, characterized by deposition of extracellular amyloid-beta (Aß) aggregates and intraneuronal hyperphosphorylated Tau. Many AD risk genes, identified in genome-wide association studies (GWAS), are expressed in microglia, the innate immune cells of the central nervous system. Specific subtypes of microglia emerged in relation to AD pathology, such as disease-associated microglia (DAMs), which increased in number with age in amyloid mouse models and in human AD cases. However, the initial transcriptional changes in these microglia in response to amyloid are still unknown. Here, to determine early changes in microglia gene expression, hippocampal microglia from male APPswe/PS1dE9 (APP/PS1) mice and wild-type littermates were isolated and analyzed by RNA sequencing (RNA-seq). By bulk RNA-seq, transcriptomic changes were detected in hippocampal microglia from 6-months-old APP/PS1 mice. By performing single-cell RNA-seq of CD11c-positive and negative microglia from 6-months-old APP/PS1 mice and analysis of the transcriptional trajectory from homeostatic to CD11c-positive microglia, we identified a set of genes that potentially reflect the initial response of microglia to Aß.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Animales , Humanos , Lactante , Masculino , Ratones , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Modelos Animales de Enfermedad , Estudio de Asociación del Genoma Completo , Ratones Transgénicos , Microglía/metabolismo , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/metabolismo , Placa Amiloide , Presenilina-1/genética , Transcriptoma
2.
Alzheimers Dement ; 20(3): 1637-1655, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38055782

RESUMEN

INTRODUCTION: Early-life stress (ES) increases the risk for Alzheimer's disease (AD). We and others have shown that ES aggravates amyloid-beta (Aß) pathology and promotes cognitive dysfunction in APP/PS1 mice, but underlying mechanisms remain unclear. METHODS: We studied how ES affects the hippocampal synaptic proteome in wild-type (WT) and APP/PS1 mice at early and late pathological stages, and validated hits using electron microscopy and immunofluorescence. RESULTS: The hippocampal synaptosomes of both ES-exposed WT and early-stage APP/PS1 mice showed a relative decrease in actin dynamics-related proteins and a relative increase in mitochondrial proteins. ES had minimal effects on older WT mice, while strongly affecting the synaptic proteome of advanced stage APP/PS1 mice, particularly the expression of astrocytic and mitochondrial proteins. DISCUSSION: Our data show that ES and amyloidosis share pathogenic pathways involving synaptic mitochondrial dysfunction and lipid metabolism, which may underlie the observed impact of ES on the trajectory of AD.


Asunto(s)
Experiencias Adversas de la Infancia , Enfermedad de Alzheimer , Amiloidosis , Ratones , Animales , Metabolismo de los Lípidos , Ratones Transgénicos , Proteoma , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Amiloidosis/metabolismo , Mitocondrias , Proteínas Mitocondriales , Modelos Animales de Enfermedad , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Presenilina-1/metabolismo
3.
Elife ; 122023 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-37695731

RESUMEN

Tomosyn is a large, non-canonical SNARE protein proposed to act as an inhibitor of SNARE complex formation in the exocytosis of secretory vesicles. In the brain, tomosyn inhibits the fusion of synaptic vesicles (SVs), whereas its role in the fusion of neuropeptide-containing dense core vesicles (DCVs) is unknown. Here, we addressed this question using a new mouse model with a conditional deletion of tomosyn (Stxbp5) and its paralogue tomosyn-2 (Stxbp5l). We monitored DCV exocytosis at single vesicle resolution in tomosyn-deficient primary neurons using a validated pHluorin-based assay. Surprisingly, loss of tomosyns did not affect the number of DCV fusion events but resulted in a strong reduction of intracellular levels of DCV cargos, such as neuropeptide Y (NPY) and brain-derived neurotrophic factor (BDNF). BDNF levels were largely restored by re-expression of tomosyn but not by inhibition of lysosomal proteolysis. Tomosyn's SNARE domain was dispensable for the rescue. The size of the trans-Golgi network and DCVs was decreased, and the speed of DCV cargo flux through Golgi was increased in tomosyn-deficient neurons, suggesting a role for tomosyns in DCV biogenesis. Additionally, tomosyn-deficient neurons showed impaired mRNA expression of some DCV cargos, which was not restored by re-expression of tomosyn and was also observed in Cre-expressing wild-type neurons not carrying loxP sites, suggesting a direct effect of Cre recombinase on neuronal transcription. Taken together, our findings argue against an inhibitory role of tomosyns in neuronal DCV exocytosis and suggests an evolutionary conserved function of tomosyns in the packaging of secretory cargo at the Golgi.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Vesículas de Núcleo Denso , Proteínas del Tejido Nervioso , Neuronas , Proteínas R-SNARE , Animales , Ratones , Evolución Biológica , Aparato de Golgi , Proteínas del Tejido Nervioso/genética , Proteínas R-SNARE/genética , Exocitosis
4.
Alzheimers Res Ther ; 15(1): 142, 2023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-37608393

RESUMEN

BACKGROUND: Studies in animal models of Alzheimer's disease (AD) have provided valuable insights into the molecular and cellular processes underlying neuronal network dysfunction. Whether and how AD-related neurophysiological alterations translate between mice and humans remains however uncertain. METHODS: We characterized neurophysiological alterations in mice and humans carrying AD mutations in the APP and/or PSEN1 genes, focusing on early pre-symptomatic changes. Longitudinal local field potential recordings were performed in APP/PS1 mice and cross-sectional magnetoencephalography recordings in human APP and/or PSEN1 mutation carriers. All recordings were acquired in the left frontal cortex, parietal cortex, and hippocampus. Spectral power and functional connectivity were analyzed and compared with wildtype control mice and healthy age-matched human subjects. RESULTS: APP/PS1 mice showed increased absolute power, especially at higher frequencies (beta and gamma) and predominantly between 3 and 6 moa. Relative power showed an overall shift from lower to higher frequencies over almost the entire recording period and across all three brain regions. Human mutation carriers, on the other hand, did not show changes in power except for an increase in relative theta power in the hippocampus. Mouse parietal cortex and hippocampal power spectra showed a characteristic peak at around 8 Hz which was not significantly altered in transgenic mice. Human power spectra showed a characteristic peak at around 9 Hz, the frequency of which was significantly reduced in mutation carriers. Significant alterations in functional connectivity were detected in theta, alpha, beta, and gamma frequency bands, but the exact frequency range and direction of change differed for APP/PS1 mice and human mutation carriers. CONCLUSIONS: Both mice and humans carrying APP and/or PSEN1 mutations show abnormal neurophysiological activity, but several measures do not translate one-to-one between species. Alterations in absolute and relative power in mice should be interpreted with care and may be due to overexpression of amyloid in combination with the absence of tau pathology and cholinergic degeneration. Future studies should explore whether changes in brain activity in other AD mouse models, for instance, those also including tau pathology, provide better translation to the human AD continuum.


Asunto(s)
Enfermedad de Alzheimer , Precursor de Proteína beta-Amiloide , Presenilina-1 , Animales , Humanos , Ratones , Enfermedad de Alzheimer/genética , Proteínas Amiloidogénicas , Ratones Transgénicos , Mutación/genética , Presenilina-1/genética , Precursor de Proteína beta-Amiloide/genética
5.
Mol Psychiatry ; 2023 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-37419975

RESUMEN

Fast-spiking parvalbumin (PV) interneurons are inhibitory interneurons with unique morphological and functional properties that allow them to precisely control local circuitry, brain networks and memory processing. Since the discovery in 1987 that PV is expressed in a subset of fast-spiking GABAergic inhibitory neurons, our knowledge of the complex molecular and physiological properties of these cells has been expanding. In this review, we highlight the specific properties of PV neurons that allow them to fire at high frequency and with high reliability, enabling them to control network oscillations and shape the encoding, consolidation and retrieval of memories. We next discuss multiple studies reporting PV neuron impairment as a critical step in neuronal network dysfunction and cognitive decline in mouse models of Alzheimer's disease (AD). Finally, we propose potential mechanisms underlying PV neuron dysfunction in AD and we argue that early changes in PV neuron activity could be a causal step in AD-associated network and memory impairment and a significant contributor to disease pathogenesis.

6.
medRxiv ; 2023 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-37292975

RESUMEN

Understanding how genetic risk variants contribute to Alzheimer's Disease etiology remains a challenge. Single-cell RNA sequencing (scRNAseq) allows for the investigation of cell type specific effects of genomic risk loci on gene expression. Using seven scRNAseq datasets totalling >1.3 million cells, we investigated differential correlation of genes between healthy individuals and individuals diagnosed with Alzheimer's Disease. Using the number of differential correlations of a gene to estimate its involvement and potential impact, we present a prioritization scheme for identifying probable causal genes near genomic risk loci. Besides prioritizing genes, our approach pin-points specific cell types and provides insight into the rewiring of gene-gene relationships associated with Alzheimer's.

7.
Biol Direct ; 18(1): 22, 2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-37161421

RESUMEN

Synapse diversity has been described from different perspectives, ranging from the specific neurotransmitters released, to their diverse biophysical properties and proteome profiles. However, synapse diversity at the transcriptional level has not been systematically identified across all synapse populations in the brain. To quantify and identify specific synaptic features of neuronal cell types we combined the SynGO (Synaptic Gene Ontology) database with single-cell RNA sequencing data of the mouse neocortex. We show that cell types can be discriminated by synaptic genes alone with the same power as all genes. The cell type discriminatory power is not equally distributed across synaptic genes as we could identify functional categories and synaptic compartments with greater cell type specific expression. Synaptic genes, and specific SynGO categories, belonged to three different types of gene modules: gradient expression over all cell types, gradient expression in selected cell types and cell class- or type-specific profiles. This data provides a deeper understanding of synapse diversity in the neocortex and identifies potential markers to selectively identify synapses from specific neuronal populations.


Asunto(s)
Encéfalo , Redes Reguladoras de Genes , Animales , Ratones
8.
Cells ; 12(9)2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-37174641

RESUMEN

Suspension TRAPping filter (sTRAP) is an attractive sample preparation method for proteomics studies. The sTRAP protocol uses 5% SDS that maximizes protein solubilization. Proteins are trapped on a borosilicate glass membrane filter, where SDS is subsequently removed from the filter. After trypsin digestion, peptides are analyzed directly by LC-MS. Here, we demonstrated the use of a low-cost plasmid DNA micro-spin column for the sTRAP sample preparation of a dilution series of a synapse-enriched sample with a range of 10-0.3 µg. With 120 ng tryptic peptides loaded onto the Evosep LC system coupled to timsTOF Pro 2 mass spectrometer, we identified 5700 protein groups with 4% coefficient of variation (CoV). Comparing other sample preparation protocols, such as the in-gel digestion and the commercial Protifi S-TRAP with the plasmid DNA micro-spin column, the last is superior in both protein and peptide identification numbers and CoV. We applied sTRAP for the analysis of the hippocampal proteome from the 5xFAD mouse model of Alzheimer's disease and their wildtype littermates, and revealed 121 up- and 54 down-regulated proteins. Protein changes in the mutant mice point to the alteration of processes related to the immune system and Amyloid aggregation, which correlates well with the known major Alzheimer's-disease-related pathology. Data are available via ProteomeXchange with the identifier PXD041045.


Asunto(s)
Enfermedad de Alzheimer , Ratones , Animales , Enfermedad de Alzheimer/metabolismo , Proteómica/métodos , Hipocampo/metabolismo , Péptidos/metabolismo , Proteoma/metabolismo , ADN/metabolismo , Modelos Animales de Enfermedad , Plásmidos , Proteínas de Unión al ARN/metabolismo
9.
Glia ; 71(7): 1770-1785, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37002718

RESUMEN

Loss of function of the astrocyte membrane protein MLC1 is the primary genetic cause of the rare white matter disease Megalencephalic Leukoencephalopathy with subcortical Cysts (MLC), which is characterized by disrupted brain ion and water homeostasis. MLC1 is prominently present around fluid barriers in the brain, such as in astrocyte endfeet contacting blood vessels and in processes contacting the meninges. Whether the protein plays a role in other astrocyte domains is unknown. Here, we show that MLC1 is present in distal astrocyte processes, also known as perisynaptic astrocyte processes (PAPs) or astrocyte leaflets, which closely interact with excitatory synapses in the CA1 region of the hippocampus. We find that the PAP tip extending toward excitatory synapses is shortened in Mlc1-null mice. This affects glutamatergic synaptic transmission, resulting in a reduced rate of spontaneous release events and slower glutamate re-uptake under challenging conditions. Moreover, while PAPs in wildtype mice retract from the synapse upon fear conditioning, we reveal that this structural plasticity is disturbed in Mlc1-null mice, where PAPs are already shorter. Finally, Mlc1-null mice show reduced contextual fear memory. In conclusion, our study uncovers an unexpected role for the astrocyte protein MLC1 in regulating the structure of PAPs. Loss of MLC1 alters excitatory synaptic transmission, prevents normal PAP remodeling induced by fear conditioning and disrupts contextual fear memory expression. Thus, MLC1 is a new player in the regulation of astrocyte-synapse interactions.


Asunto(s)
Astrocitos , Proteínas de la Membrana , Sinapsis , Animales , Ratones , Astrocitos/metabolismo , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/genética , Proteínas de la Membrana/metabolismo , Ratones Noqueados , Sinapsis/metabolismo
10.
Int J Mol Sci ; 24(8)2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-37108794

RESUMEN

The pentameric γ-Aminobutyric acid type A receptors (GABAARs) are ligand-gated ion channels that mediate the majority of inhibitory neurotransmission in the brain. In the cerebellum, the two main receptor subtypes are the 2α1/2ß/γ and 2α6/2ß/δ subunits. In the present study, an interaction proteomics workflow was used to reveal additional subtypes that contain both α1 and α6 subunits. Immunoprecipitation of the α6 subunit from mouse brain cerebellar extract co-purified the α1 subunit. In line with this, pre-incubation of the cerebellar extract with anti-α6 antibodies and analysis by blue native gel electrophoresis mass-shifted part of the α1 complexes, indicative of the existence of an α1α6-containing receptor. Subsequent mass spectrometry of the blue native gel showed the α1α6-containing receptor subtype to exist in two main forms, i.e., with or without Neuroligin-2. Immunocytochemistry on a cerebellar granule cell culture revealed co-localization of α6 and α1 in post-synaptic puncta that apposed the presynaptic marker protein Vesicular GABA transporter, indicative of the presence of this synaptic GABAAR subtype.


Asunto(s)
Receptores de GABA-A , Receptores de GABA , Ratones , Animales , Receptores de GABA/metabolismo , Receptores de GABA-A/metabolismo , Electroforesis en Gel de Poliacrilamida Nativa , Cerebelo/metabolismo , Anticuerpos/metabolismo , Ácido gamma-Aminobutírico/metabolismo
11.
Cell Genom ; 3(3): 100250, 2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36950384

RESUMEN

Autism spectrum disorders (ASDs) have been linked to genes with enriched expression in the brain, but it is unclear how these genes converge into cell-type-specific networks. We built a protein-protein interaction network for 13 ASD-associated genes in human excitatory neurons derived from induced pluripotent stem cells (iPSCs). The network contains newly reported interactions and is enriched for genetic and transcriptional perturbations observed in individuals with ASDs. We leveraged the network data to show that the ASD-linked brain-specific isoform of ANK2 is important for its interactions with synaptic proteins and to characterize a PTEN-AKAP8L interaction that influences neuronal growth. The IGF2BP1-3 complex emerged as a convergent point in the network that may regulate a transcriptional circuit of ASD-associated genes. Our findings showcase cell-type-specific interactomes as a framework to complement genetic and transcriptomic data and illustrate how both individual and convergent interactions can lead to biological insights into ASDs.

12.
Neuron ; 111(11): 1760-1775.e8, 2023 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-36996810

RESUMEN

The proteome of glutamatergic synapses is diverse across the mammalian brain and involved in neurodevelopmental disorders (NDDs). Among those is fragile X syndrome (FXS), an NDD caused by the absence of the functional RNA-binding protein FMRP. Here, we demonstrate how the brain region-specific composition of postsynaptic density (PSD) contributes to FXS. In the striatum, the FXS mouse model shows an altered association of the PSD with the actin cytoskeleton, reflecting immature dendritic spine morphology and reduced synaptic actin dynamics. Enhancing actin turnover with constitutively active RAC1 ameliorates these deficits. At the behavioral level, the FXS model displays striatal-driven inflexibility, a typical feature of FXS individuals, which is rescued by exogenous RAC1. Striatal ablation of Fmr1 is sufficient to recapitulate behavioral impairments observed in the FXS model. These results indicate that dysregulation of synaptic actin dynamics in the striatum, a region largely unexplored in FXS, contributes to the manifestation of FXS behavioral phenotypes.


Asunto(s)
Síndrome del Cromosoma X Frágil , Animales , Ratones , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Actinas/metabolismo , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Ratones Noqueados , Espinas Dendríticas/metabolismo , Mamíferos/metabolismo
13.
Alzheimers Res Ther ; 15(1): 59, 2023 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-36949537

RESUMEN

BACKGROUND: Frontotemporal lobar degeneration (FTLD) is characterized pathologically by neuronal and glial inclusions of hyperphosphorylated tau or by neuronal cytoplasmic inclusions of TDP43. This study aimed at deciphering the molecular mechanisms leading to these distinct pathological subtypes. METHODS: To this end, we performed an unbiased mass spectrometry-based proteomic and systems-level analysis of the middle frontal gyrus cortices of FTLD-tau (n = 6), FTLD-TDP (n = 15), and control patients (n = 5). We validated these results in an independent patient cohort (total n = 24). RESULTS: The middle frontal gyrus cortex proteome was most significantly altered in FTLD-tau compared to controls (294 differentially expressed proteins at FDR = 0.05). The proteomic modifications in FTLD-TDP were more heterogeneous (49 differentially expressed proteins at FDR = 0.1). Weighted co-expression network analysis revealed 17 modules of co-regulated proteins, 13 of which were dysregulated in FTLD-tau. These modules included proteins associated with oxidative phosphorylation, scavenger mechanisms, chromatin regulation, and clathrin-mediated transport in both the frontal and temporal cortex of FTLD-tau. The most strongly dysregulated subnetworks identified cyclin-dependent kinase 5 (CDK5) and polypyrimidine tract-binding protein 1 (PTBP1) as key players in the disease process. Dysregulation of 9 of these modules was confirmed in independent validation data sets of FLTD-tau and control temporal and frontal cortex (total n = 24). Dysregulated modules were primarily associated with changes in astrocyte and endothelial cell protein abundance levels, indicating pathological changes in FTD are not limited to neurons. CONCLUSIONS: Using this innovative workflow and zooming in on the most strongly dysregulated proteins of the identified modules, we were able to identify disease-associated mechanisms in FTLD-tau with high potential as biomarkers and/or therapeutic targets.


Asunto(s)
Proteínas de Unión al ADN , Lóbulo Frontal , Demencia Frontotemporal , Lóbulo Temporal , Proteínas tau , Lóbulo Frontal/metabolismo , Lóbulo Temporal/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Demencia Frontotemporal/metabolismo , Humanos , Masculino , Femenino , Proteómica , Proteínas tau/metabolismo , Proteínas de Unión al ADN/metabolismo , Biomarcadores/metabolismo , Países Bajos
14.
Front Cell Neurosci ; 17: 1085690, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36779013

RESUMEN

Introduction: Astrocyte-synapse bi-directional communication is required for neuronal development and synaptic plasticity. Astrocytes structurally interact with synapses using their distal processes also known as leaflets or perisynaptic astrocytic processes (PAPs). We recently showed that these PAPs are retracted from hippocampal synapses, and involved in the consolidation of fear memory. However, whether astrocytic synaptic coverage is affected when memory is impaired is unknown. Methods: Here, we describe in detail an electron microscopy method that makes use of a large number of 2D images to investigate structural astrocyte-synapse interaction in paraformaldehyde fixed brain tissue of mice. Results and discussion: We show that fear memory-induced synaptic activation reduces the interaction between the PAPs and the presynapse, but not the postsynapse, accompanied by retraction of the PAP tip from the synaptic cleft. Interestingly, this retraction is absent in the APP/PS1 mouse model of Alzheimer's disease, supporting the concept that alterations in astrocyte-synapse coverage contribute to memory processing.

15.
Alzheimers Dement ; 19(8): 3563-3574, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36825551

RESUMEN

INTRODUCTION: Cerebrospinal fluid (CSF) biomarkers for specific cellular disease processes are lacking for tauopathies. In this translational study we aimed to identify CSF biomarkers reflecting early tau pathology-associated unfolded protein response (UPR) activation. METHODS: We employed mass spectrometry proteomics and targeted immunoanalysis in a combination of biomarker discovery in primary mouse neurons in vitro and validation in patient CSF from two independent large multicentre cohorts (EMIF-AD MBD, n = 310; PRIDE, n = 771). RESULTS: First, we identify members of the protein disulfide isomerase (PDI) family in the neuronal UPR-activated secretome and validate secretion upon tau aggregation in vitro. Next, we demonstrate that PDIA1 and PDIA3 levels correlate with total- and phosphorylated-tau levels in CSF. PDIA1 levels are increased in CSF from AD patients compared to controls and patients with tau-unrelated frontotemporal and Lewy body dementia (LBD). HIGHLIGHTS: Neuronal unfolded protein response (UPR) activation induces the secretion of protein disulfide isomerases (PDIs) in vitro. PDIA1 is secreted upon tau aggregation in neurons in vitro. PDIA1 and PDIA3 levels correlate with total and phosphorylated tau levels in CSF. PDIA1 levels are increased in CSF from Alzheimer's disease (AD) patients compared to controls. PDIA1 levels are not increased in CSF from tau-unrelated frontotemporal dementia (FTD) and Lewy body dementia (LBD) patients.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad por Cuerpos de Lewy , Animales , Ratones , Enfermedad por Cuerpos de Lewy/líquido cefalorraquídeo , Proteínas tau/líquido cefalorraquídeo , Proteína Disulfuro Isomerasas , Péptidos beta-Amiloides/líquido cefalorraquídeo , Fosforilación , Enfermedad de Alzheimer/líquido cefalorraquídeo , Biomarcadores/líquido cefalorraquídeo , Fragmentos de Péptidos/líquido cefalorraquídeo
16.
Biol Psychiatry ; 94(3): 226-238, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-36702661

RESUMEN

BACKGROUND: The formation and retrieval of fear memories depends on orchestrated synaptic activity of neuronal ensembles within the hippocampus, and it is becoming increasingly evident that astrocytes residing in the environment of these synapses play a central role in shaping cellular memory representations. Astrocyte distal processes, known as leaflets, fine-tune synaptic activity by clearing neurotransmitters and limiting glutamate diffusion. However, how astroglial synaptic coverage contributes to mnemonic processing of fearful experiences remains largely unknown. METHODS: We used electron microscopy to observe changes in astroglial coverage of hippocampal synapses during consolidation of fear memory in mice. To manipulate astroglial synaptic coverage, we depleted ezrin, an integral leaflet-structural protein, from hippocampal astrocytes using CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 gene editing. Next, a combination of Föster resonance energy transfer analysis, genetically encoded glutamate sensors, and whole-cell patch-clamp recordings was used to determine whether the proximity of astrocyte leaflets to the synapse is critical for synaptic integrity and function. RESULTS: We found that consolidation of a recent fear memory is accompanied by a transient retraction of astrocyte leaflets from hippocampal synapses and increased activation of NMDA receptors. Accordingly, astrocyte-specific depletion of ezrin resulted in shorter astrocyte leaflets and reduced astrocyte contact with the synaptic cleft, which consequently boosted extrasynaptic glutamate diffusion and NMDA receptor activation. Importantly, after fear conditioning, these cellular phenotypes translated to increased retrieval-evoked activation of CA1 pyramidal neurons and enhanced fear memory expression. CONCLUSIONS: Together, our data show that withdrawal of astrocyte leaflets from the synaptic cleft is an experience-induced, temporally regulated process that gates the strength of fear memories.

17.
Brain Behav Immun ; 107: 225-241, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36270437

RESUMEN

Alzheimer's disease (AD) is a neurodegenerative disorder characterized by cognitive decline, the neuropathological formation of amyloid-beta (Aß) plaques and neurofibrillary tangles. The best cellular correlates of the early cognitive deficits in AD patients are synapse loss and gliosis. In particular, it is unclear whether the activation of microglia (microgliosis) has a neuroprotective or pathological role early in AD. Here we report that microgliosis is an early mediator of synaptic dysfunction and cognitive impairment in APP/PS1 mice, a mouse model of increased amyloidosis. We found that the appearance of microgliosis, synaptic dysfunction and behavioral impairment coincided with increased soluble Aß42 levels, and occurred well before the presence of Aß plaques. Inhibition of microglial activity by treatment with minocycline (MC) reduced gliosis, synaptic deficits and cognitive impairments at early pathological stages and was most effective when provided preventive, i.e., before the onset of microgliosis. Interestingly, soluble Aß levels or Aß plaques deposition were not affected by preventive MC treatment at an early pathological stage (4 months) whereas these were reduced upon treatment at a later stage (6 months). In conclusion, this study demonstrates the importance of early-stage prevention of microgliosis on the development of cognitive impairment in APP/PS1 mice, which might be clinically relevant in preventing memory loss and delaying AD pathogenesis.


Asunto(s)
Enfermedad de Alzheimer , Ratones , Animales , Trastornos de la Memoria/prevención & control
18.
Mol Psychiatry ; 28(4): 1545-1556, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36385170

RESUMEN

Studies using induced pluripotent stem cells (iPSCs) are gaining momentum in brain disorder modelling, but optimal study designs are poorly defined. Here, we compare commonly used designs and statistical analysis for different research aims. Furthermore, we generated immunocytochemical, electrophysiological, and proteomic data from iPSC-derived neurons of five healthy subjects, analysed data variation and conducted power simulations. These analyses show that published case-control iPSC studies are generally underpowered. Designs using isogenic iPSC lines typically have higher power than case-control designs, but generalization of conclusions is limited. We show that, for the realistic settings used in this study, a multiple isogenic pair design increases absolute power up to 60% or requires up to 5-fold fewer lines. A free web tool is presented to explore the power of different study designs, using any (pilot) data.


Asunto(s)
Encefalopatías , Células Madre Pluripotentes Inducidas , Humanos , Proteómica , Estudios de Casos y Controles , Voluntarios Sanos
19.
J Proteome Res ; 22(2): 374-386, 2023 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-36541440

RESUMEN

In the rapidly moving proteomics field, a diverse patchwork of data analysis pipelines and algorithms for data normalization and differential expression analysis is used by the community. We generated a mass spectrometry downstream analysis pipeline (MS-DAP) that integrates both popular and recently developed algorithms for normalization and statistical analyses. Additional algorithms can be easily added in the future as plugins. MS-DAP is open-source and facilitates transparent and reproducible proteome science by generating extensive data visualizations and quality reporting, provided as standardized PDF reports. Second, we performed a systematic evaluation of methods for normalization and statistical analysis on a large variety of data sets, including additional data generated in this study, which revealed key differences. Commonly used approaches for differential testing based on moderated t-statistics were consistently outperformed by more recent statistical models, all integrated in MS-DAP. Third, we introduced a novel normalization algorithm that rescues deficiencies observed in commonly used normalization methods. Finally, we used the MS-DAP platform to reanalyze a recently published large-scale proteomics data set of CSF from AD patients. This revealed increased sensitivity, resulting in additional significant target proteins which improved overlap with results reported in related studies and includes a large set of new potential AD biomarkers in addition to previously reported.


Asunto(s)
Enfermedad de Alzheimer , Programas Informáticos , Humanos , Proteómica/métodos , Benchmarking , Flujo de Trabajo , Enfermedad de Alzheimer/diagnóstico , Proteoma/análisis , Espectrometría de Masas/métodos , Biomarcadores
20.
Cells ; 13(1)2023 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-38201218

RESUMEN

GABAA receptors are the major inhibitory receptors in the brain. They are hetero-pentamers with a composition of predominantly two α, two ß, and one γ or δ subunit. Of the six α subunit genes, the α5 subunit displays a limited spatial expression pattern and is known to mediate both phasic and tonic inhibition. In this study, using immunoaffinity-based proteomics, we identified the α5 subunit containing receptor complexes in the hippocampus and olfactory bulb. The α1-α5 interaction was identified in both brain regions, albeit with significantly different stoichiometries. In line with this, reverse IPs using anti-α1 antibodies showed the α5-α1 co-occurrence and validated the quantitative difference. In addition, we showed that the association of Neuroligin 2 with α1-containing receptors was much higher in the olfactory bulb than in the hippocampus, which was confirmed using blue native gel electrophoresis and quantitative mass spectrometry. Finally, immunocytochemical staining revealed a co-localization of α1 and α5 subunits in the post-synaptic puncta in the hippocampus.


Asunto(s)
Proteoma , Proteómica , Electroforesis en Gel de Poliacrilamida Nativa , Receptores de GABA-A , Encéfalo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...