Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Cell Biol ; 26(4): 645-659, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38589531

RESUMEN

The cellular lipidome comprises thousands of unique lipid species. Here, using mass spectrometry-based targeted lipidomics, we characterize the lipid landscape of human and mouse immune cells ( www.cellularlipidatlas.com ). Using this resource, we show that immune cells have unique lipidomic signatures and that processes such as activation, maturation and development impact immune cell lipid composition. To demonstrate the potential of this resource to provide insights into immune cell biology, we determine how a cell-specific lipid trait-differences in the abundance of polyunsaturated fatty acid-containing glycerophospholipids (PUFA-PLs)-influences immune cell biology. First, we show that differences in PUFA-PL content underpin the differential susceptibility of immune cells to ferroptosis. Second, we show that low PUFA-PL content promotes resistance to ferroptosis in activated neutrophils. In summary, we show that the lipid landscape is a defining feature of immune cell identity and that cell-specific lipid phenotypes underpin aspects of immune cell physiology.


Asunto(s)
Ferroptosis , Humanos , Animales , Ratones , Ácidos Grasos Insaturados
2.
BMC Med ; 20(1): 242, 2022 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-35871677

RESUMEN

BACKGROUND: Lipids play a vital role in health and disease, but changes to their circulating levels and the link with obesity remain poorly characterized in expecting mothers and their offspring in early childhood. METHODS: LC-MS/MS-based quantitation of 480 lipid species was performed on 2491 plasma samples collected at 4 time points in the mother-offspring Asian cohort GUSTO (Growing Up in Singapore Towards healthy Outcomes). These 4 time points constituted samples collected from mothers at 26-28 weeks of gestation (n=752) and 4-5 years postpartum (n=650), and their offspring at birth (n=751) and 6 years of age (n=338). Linear regression models were used to identify the pregnancy and developmental age-specific variations in the plasma lipidomic profiles, and their association with obesity risk. An independent birth cohort (n=1935), the Barwon Infant Study (BIS), comprising mother-offspring dyads of Caucasian origin was used for validation. RESULTS: Levels of 36% of the profiled lipids were significantly higher (absolute fold change > 1.5 and Padj < 0.05) in antenatal maternal circulation as compared to the postnatal phase, with phosphatidylethanolamine levels changing the most. Compared to antenatal maternal lipids, cord blood showed lower concentrations of most lipid species (79%) except lysophospholipids and acylcarnitines. Changes in lipid concentrations from birth to 6 years of age were much higher in magnitude (log2FC=-2.10 to 6.25) than the changes observed between a 6-year-old child and an adult (postnatal mother) (log2FC=-0.68 to 1.18). Associations of cord blood lipidomic profiles with birth weight displayed distinct trends compared to the lipidomic profiles associated with child BMI at 6 years. Comparison of the results between the child and adult BMI identified similarities in association with consistent trends (R2=0.75). However, large number of lipids were associated with BMI in adults (67%) compared to the children (29%). Pre-pregnancy BMI was specifically associated with decrease in the levels of phospholipids, sphingomyelin, and several triacylglycerol species in pregnancy. CONCLUSIONS: In summary, our study provides a detailed landscape of the in utero lipid environment provided by the gestating mother to the growing fetus, and the magnitude of changes in plasma lipidomic profiles from birth to early childhood. We identified the effects of adiposity on the circulating lipid levels in pregnant and non-pregnant women as well as offspring at birth and at 6 years of age. Additionally, the pediatric vs maternal overlap of the circulating lipid phenotype of obesity risk provides intergenerational insights and early opportunities to track and intervene the onset of metabolic adversities. CLINICAL TRIAL REGISTRATION: This birth cohort is a prospective observational study, which was registered on 1 July 2010 under the identifier NCT01174875 .


Asunto(s)
Lipidómica , Madres , Peso al Nacer , Índice de Masa Corporal , Cromatografía Liquida , Estudios de Cohortes , Femenino , Humanos , Obesidad/complicaciones , Embarazo , Espectrometría de Masas en Tándem , Triglicéridos
3.
Elife ; 112022 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-35535496

RESUMEN

Background: The risk of adult onset cardiovascular and metabolic (cardiometabolic) disease accrues from early life. Infection is ubiquitous in infancy and induces inflammation, a key cardiometabolic risk factor, but the relationship between infection, inflammation, and metabolic profiles in early childhood remains unexplored. We investigated relationships between infection and plasma metabolomic and lipidomic profiles at age 6 and 12 months, and mediation of these associations by inflammation. Methods: Matched infection, metabolomics, and lipidomics data were generated from 555 infants in a pre-birth longitudinal cohort. Infection data from birth to 12 months were parent-reported (total infections at age 1, 3, 6, 9, and 12 months), inflammation markers (high-sensitivity C-reactive protein [hsCRP]; glycoprotein acetyls [GlycA]) were quantified at 12 months. Metabolic profiles were 12-month plasma nuclear magnetic resonance metabolomics (228 metabolites) and liquid chromatography/mass spectrometry lipidomics (776 lipids). Associations were evaluated with multivariable linear regression models. In secondary analyses, corresponding inflammation and metabolic data from birth (serum) and 6-month (plasma) time points were used. Results: At 12 months, more frequent infant infections were associated with adverse metabolomic (elevated inflammation markers, triglycerides and phenylalanine, and lower high-density lipoprotein [HDL] cholesterol and apolipoprotein A1) and lipidomic profiles (elevated phosphatidylethanolamines and lower trihexosylceramides, dehydrocholesteryl esters, and plasmalogens). Similar, more marked, profiles were observed with higher GlycA, but not hsCRP. GlycA mediated a substantial proportion of the relationship between infection and metabolome/lipidome, with hsCRP generally mediating a lower proportion. Analogous relationships were observed between infection and 6-month inflammation, HDL cholesterol, and apolipoprotein A1. Conclusions: Infants with a greater infection burden in the first year of life had proinflammatory and proatherogenic plasma metabolomic/lipidomic profiles at 12 months of age that in adults are indicative of heightened risk of cardiovascular disease, obesity, and type 2 diabetes. These findings suggest potentially modifiable pathways linking early life infection and inflammation with subsequent cardiometabolic risk. Funding: The establishment work and infrastructure for the BIS was provided by the Murdoch Children's Research Institute (MCRI), Deakin University, and Barwon Health. Subsequent funding was secured from National Health and Medical Research Council of Australia (NHMRC), The Shepherd Foundation, The Jack Brockhoff Foundation, the Scobie & Claire McKinnon Trust, the Shane O'Brien Memorial Asthma Foundation, the Our Women's Our Children's Fund Raising Committee Barwon Health, the Rotary Club of Geelong, the Minderoo Foundation, the Ilhan Food Allergy Foundation, GMHBA, Vanguard Investments Australia Ltd, and the Percy Baxter Charitable Trust, Perpetual Trustees. In-kind support was provided by the Cotton On Foundation and CreativeForce. The study sponsors were not involved in the collection, analysis, and interpretation of data; writing of the report; or the decision to submit the report for publication. Research at MCRI is supported by the Victorian Government's Operational Infrastructure Support Program. This work was also supported by NHMRC Senior Research Fellowships to ALP (1008396); DB (1064629); and RS (1045161) , NHMRC Investigator Grants to ALP (1110200) and DB (1175744), NHMRC-A*STAR project grant (1149047). TM is supported by an MCRI ECR Fellowship. SB is supported by the Dutch Research Council (452173113).


Asunto(s)
Factores de Riesgo Cardiometabólico , Enfermedades Cardiovasculares , Apolipoproteína A-I , Proteína C-Reactiva , Enfermedades Cardiovasculares/epidemiología , HDL-Colesterol , Estudios de Cohortes , Diabetes Mellitus Tipo 2 , Femenino , Humanos , Lactante , Inflamación , Lipidómica
4.
Elife ; 112022 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-35234611

RESUMEN

Background: There is mounting evidence that in utero and early life exposures may predispose an individual to metabolic disorders in later life; and dysregulation of lipid metabolism is critical in such outcomes. However, there is limited knowledge about lipid metabolism and factors causing lipid dysregulation in early life that could result in adverse health outcomes in later life. We studied the effect of antenatal factors such as gestational age, birth weight, and mode of birth on lipid metabolism at birth; changes in the circulating lipidome in the first 4 years of life and the effect of breastfeeding in the first year of life. From this study, we aim to generate a framework for deeper understanding into factors effecting lipid metabolism in early life, to provide early interventions for those at risk of developing metabolic disorders including cardiovascular diseases. Methods: We performed comprehensive lipid profiling of 1074 mother-child dyads in the Barwon Infant Study (BIS), a population-based pre-birth cohort and measured 776 distinct lipid features across 39 lipid classes using ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). We measured lipids in 1032 maternal serum samples at 28 weeks' gestation, 893 cord serum samples at birth, 793, 735, and 511 plasma samples at 6, 12 months, and 4 years, respectively. Cord serum was enriched with long chain poly-unsaturated fatty acids (LC-PUFAs), and corresponding cholesteryl esters relative to the maternal serum. We performed regression analyses to investigate the associations of cord serum lipid species with antenatal factors: gestational age, birth weight, mode of birth and duration of labour. Results: The lipidome differed between mother and newborn and changed markedly with increasing child's age. Alkenylphosphatidylethanolamine species containing LC-PUFAs increased with child's age, whereas the corresponding lysophospholipids and triglycerides decreased. Majority of the cord serum lipids were strongly associated with gestational age and birth weight, with most lipids showing opposing associations. Each mode of birth showed an independent association with cord serum lipids. Breastfeeding had a significant impact on the plasma lipidome in the first year of life, with up to 17-fold increases in a few species of alkyldiaclylglycerols at 6 months of age. Conclusions: This study sheds light on lipid metabolism in infancy and early childhood and provide a framework to define the relationship between lipid metabolism and health outcomes in early childhood. Funding: This work was supported by the A*STAR-NHMRC joint call funding (1711624031).


Asunto(s)
Metabolismo de los Lípidos , Espectrometría de Masas en Tándem , Peso al Nacer , Preescolar , Femenino , Humanos , Lactante , Recién Nacido , Lipidómica , Embarazo , Triglicéridos
5.
Metabolites ; 11(9)2021 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-34564462

RESUMEN

Lipid metabolism is tightly linked to adiposity. Comprehensive lipidomic profiling offers new insights into the dysregulation of lipid metabolism in relation to weight gain. Here, we investigated the relationship of the human plasma lipidome and changes in waist circumference (WC) and body mass index (BMI). Adults (2653 men and 3196 women), 25-95 years old who attended the baseline survey of the Australian Diabetes, Obesity and Lifestyle Study (AusDiab) and the 5-year follow-up were enrolled. A targeted lipidomic approach was used to quantify 706 distinct molecular lipid species in the plasma samples. Multiple linear regression models were used to examine the relationship between the baseline lipidomic profile and changes in WC and BMI. Metabolic scores for change in WC were generated using a ridge regression model. Alkyl-diacylglycerol such as TG(O-50:2) [NL-18:1] displayed the strongest association with change in WC (ß-coefficient = 0.125 cm increment per SD increment in baseline lipid level, p = 2.78 × 10-11. Many lipid species containing linoleate (18:2) fatty acids were negatively associated with both WC and BMI gain. Compared to traditional models, multivariate models containing lipid species identify individuals at a greater risk of gaining WC: top quintile relative to bottom quintile (odds ratio, 95% CI = 5.4, 3.8-6.6 for women and 2.3, 1.7-3.0 for men). Our findings define metabolic profiles that characterize individuals at risk of weight gain or WC increase and provide important insight into the biological role of lipids in obesity.

6.
Metabolites ; 11(5)2021 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-34066368

RESUMEN

Plasmalogens or alkenylphospholipids are a sub-class of glycerophospholipids with numerous biological functions and are thought to have protective effects against metabolic disease. Dietary supplementation with alkylglycerols (AKGs) has been shown to increase endogenous plasmalogen levels, however effective modulation of different molecular plasmalogen species has not yet been demonstrated. In this study, the effects of an orally-administered AKG mix (a mixture of chimyl, batyl and selachyl alcohol at a 1:1:1 ratio) on plasma and tissue lipids, including plasmalogens, was evaluated. Mice on a Western-type diet were treated with either an AKG mix or vehicle (lecithin) for 1, 2, 4, 8 and 12 weeks. Treatment with the AKG mix significantly increased the total plasmalogen content of plasma, liver and adipose tissue as a result of elevations in multiple plasmalogen species with different alkenyl chains. Alkylphospholipids, the endogenous precursors of plasmalogens, showed a rapid and significant increase in plasma, adipose tissue, liver and skeletal muscle. A significant accumulation of alkyl-diacylglycerol and lyso-ether phospholipids was also observed in plasma and tissues. Additionally, the dynamics of plasmalogen-level changes following AKG mix supplementation differed between tissues. These findings indicate that oral supplementation with an AKG mix is capable of upregulating and maintaining stable expression of multiple molecular plasmalogen species in circulation and tissues.

7.
J Lipid Res ; 62: 100092, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34146594

RESUMEN

Plasmalogens are membrane glycerophospholipids with diverse biological functions. Reduced plasmalogen levels have been observed in metabolic diseases; hence, increasing their levels might be beneficial in ameliorating these conditions. Shark liver oil (SLO) is a rich source of alkylglycerols that can be metabolized into plasmalogens. This study was designed to evaluate the impact of SLO supplementation on endogenous plasmalogen levels in individuals with features of metabolic disease. In this randomized, double-blind, placebo-controlled cross-over study, the participants (10 overweight or obese males) received 4-g Alkyrol® (purified SLO) or placebo (methylcellulose) per day for 3 weeks followed by a 3-week washout phase and were then crossed over to 3 weeks of the alternate placebo/Alkyrol® treatment. SLO supplementation led to significant changes in plasma and circulatory white blood cell lipidomes, notably increased levels of plasmalogens and other ether lipids. In addition, SLO supplementation significantly decreased the plasma levels of total free cholesterol, triglycerides, and C-reactive protein. These findings suggest that SLO supplementation can enrich plasma and cellular plasmalogens and this enrichment may provide protection against obesity-related dyslipidemia and inflammation.


Asunto(s)
Dislipidemias/tratamiento farmacológico , Aceites de Pescado/farmacología , Inflamación/tratamiento farmacológico , Plasmalógenos/metabolismo , Adulto , Animales , Biomarcadores/sangre , Estudios Cruzados , Suplementos Dietéticos , Método Doble Ciego , Dislipidemias/metabolismo , Aceites de Pescado/administración & dosificación , Humanos , Inflamación/metabolismo , Masculino , Persona de Mediana Edad , Plasmalógenos/sangre , Tiburones
8.
Diabetes ; 70(1): 255-261, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33115826

RESUMEN

The incidence of atrial fibrillation (AF) is higher in patients with diabetes. The goal of this study was to assess if the addition of plasma lipids to traditional risk factors could improve the ability to detect and predict future AF in patients with type 2 diabetes. Logistic regression models were used to identify lipids associated with AF or future AF from plasma lipids (n = 316) measured from participants in the ADVANCE trial (n = 3,772). To gain mechanistic insight, follow-up lipid analysis was undertaken in a mouse model that has an insulin-resistant heart and is susceptible to AF. Sphingolipids, cholesteryl esters, and phospholipids were associated with AF prevalence, whereas two monosialodihexosylganglioside (GM3) ganglioside species were associated with future AF. For AF detection and prediction, addition of six and three lipids, respectively, to a base model (n = 12 conventional risk factors) increased the C-statistics (detection: from 0.661 to 0.725; prediction: from 0.674 to 0.715) and categorical net reclassification indices. The GM3(d18:1/24:1) level was lower in patients in whom AF developed, improved the C-statistic for the prediction of future AF, and was lower in the plasma of the mouse model susceptible to AF. This study demonstrates that plasma lipids have the potential to improve the detection and prediction of AF in patients with diabetes.


Asunto(s)
Fibrilación Atrial/diagnóstico , Diabetes Mellitus Tipo 2/complicaciones , Lípidos/sangre , Anciano , Animales , Fibrilación Atrial/etiología , Fibrilación Atrial/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad , Medición de Riesgo , Factores de Riesgo
9.
Nat Commun ; 11(1): 5698, 2020 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-33173055

RESUMEN

Changes to lipid metabolism are tightly associated with the onset and pathology of Alzheimer's disease (AD). Lipids are complex molecules comprising many isomeric and isobaric species, necessitating detailed analysis to enable interpretation of biological significance. Our expanded targeted lipidomics platform (569 species across 32 classes) allows for detailed lipid separation and characterisation. In this study we examined peripheral samples of two cohorts (AIBL, n = 1112 and ADNI, n = 800). We are able to identify concordant peripheral signatures associated with prevalent AD arising from lipid pathways including; ether lipids, sphingolipids (notably GM3 gangliosides) and lipid classes previously associated with cardiometabolic disease (phosphatidylethanolamine and triglycerides). We subsequently identified similar lipid signatures in both cohorts with future disease. Lastly, we developed multivariate lipid models that improved classification and prediction. Our results provide a holistic view between the lipidome and AD using a comprehensive approach, providing targets for further mechanistic investigation.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Lipidómica , Lípidos/sangre , Biomarcadores/sangre , Estudios de Cohortes , Simulación por Computador , Humanos , Metabolismo de los Lípidos , Metabolómica
10.
J Exp Med ; 214(1): 125-142, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27913566

RESUMEN

The dendritic cell signals required for the in vivo priming of IL-4-producing T cells are unknown. We used RNA sequencing to characterize DCs from skin LN of mice exposed to two different Th2 stimuli: the helminth parasite Nippostrongylus brasiliensis (Nb) and the contact sensitizer dibutyl phthalate (DBP)-FITC. Both Nb and DBP-FITC induced extensive transcriptional changes that involved multiple DC subsets. Surprisingly, these transcriptional changes were highly distinct in the two models, with only a small number of genes being similarly regulated in both conditions. Pathway analysis of expressed genes identified no shared pathways between Nb and DBP-FITC, but revealed a type-I IFN (IFN-I) signature unique to DCs from Nb-primed mice. Blocking the IFN-I receptor at the time of Nb treatment had little effect on DC migration and antigen transport to the LN, but inhibited the up-regulation of IFN-I-induced markers on DCs and effectively blunted Th2 development. In contrast, the response to DBP-FITC was not affected by IFN-I receptor blockade, a finding consistent with the known dependence of this response on the innate cytokine TSLP. Thus, the priming of Th2 responses is associated with distinct transcriptional signatures in DCs in vivo, reflecting the diverse environments in which Th2 immune responses are initiated.


Asunto(s)
Células Dendríticas/inmunología , Piel/inmunología , Células Th2/inmunología , Animales , Inmunoglobulinas/fisiología , Interferón Tipo I/fisiología , Ratones , Ratones Endogámicos C57BL , Nippostrongylus/inmunología , Receptor de Interferón alfa y beta/fisiología , Receptores de Citocinas/fisiología , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...