Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mar Biol ; 170(12): 153, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37811127

RESUMEN

Reproductive parameters were assessed in 64 male common dolphins (Delphinus delphis) examined post-mortem from strandings and bycatch in New Zealand between 1999 and 2020. The stages of male sexual maturation were assessed using morphological measurements and histological examination of testicular tissue. Age was determined via growth layer groups (GLGs) in teeth. The average age (ASM) and length (LSM) at attainment of sexual maturity were estimated to be 8.8 years and 198.3 cm, respectively. Individual variation in ASM (7.5-10 years) and LSM (190-220 cm) was observed in New Zealand common dolphins. However, on average, sexual maturity was attained at a similar length but at a marginally younger age (< 1 year) in New Zealand compared to populations in the Northern Hemisphere. All testicular variables proved better predictors of sexual maturity compared to demographic variables (age and total body length), with combined testes weight the best outright predictor of sexual maturity. Reproductive seasonality was observed in male common dolphins, with a significant increase in combined testes weight in austral summer. This aligns with most other studied populations, where seasonality in reproduction is typically observed. Given the known anthropogenic impacts on New Zealand common dolphins, we recommend that these findings be used as a baseline from which to monitor population-level changes as part of conservation management efforts. Supplementary Information: The online version contains supplementary material available at 10.1007/s00227-023-04266-5.

2.
Mar Biol ; 169(12): 158, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36466079

RESUMEN

Reproductive biology was assessed in 106 female common dolphins (Delphinus delphis) examined post-mortem from stranding and bycatch events along the New Zealand coastline between 1997 and 2019. The average age (ASM) and length (LSM) at sexual maturity was estimated at 7.5 years and 183.5 cm, respectively. The total number of corpora in mature individuals increased with age and appeared to persist throughout life. Ovarian asymmetry was apparent, with the left ovary displaying higher rates of ovulation, and a maximum of 19 corpora recorded for a 24-year-old female. The estimated ovulation and annual pregnancy rates for mature females were 0.39 year-1 and 30%, respectively. Conception and calving occurred year-round, with a weak seasonal increase observed in late austral spring and early austral summer. As these data did not clearly show whether seasonality was present, the gestation, lactation, and resting periods were calculated as either 12.6 or 12.8 months based on the presence/absence of seasonality, respectively. Similarly, calving interval ranged from 3.15 to 3.2 years, depending upon whether seasonality was considered. The estimated LSM of the New Zealand population aligns with other populations globally, although the estimated ASM is younger by approximately 6 months. Other reproductive parameters align with Northern Hemisphere populations, although demonstrate variation, which may reflect adaptations to local conditions such as water temperature and prey availability. As the species is subject to anthropogenic impacts including pollution and bycatch, we suggest our findings be used as a baseline with which to monitor trends in population parameters. Supplementary Information: The online version contains supplementary material available at 10.1007/s00227-022-04139-3.

3.
Proc Biol Sci ; 289(1982): 20221292, 2022 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-36100026

RESUMEN

Long-term evolution experiments have tested the importance of genetic and environmental factors in influencing evolutionary outcomes. Differences in phylogenetic history, recent adaptation to distinct environments and chance events, all influence the fitness of a population. However, the interplay of these factors on a population's evolutionary potential remains relatively unexplored. We tracked the outcome of 2000 generations of evolution of four natural isolates of Escherichia coli bacteria that were engineered to also create differences in shallow history by adding previously identified mutations selected in a separate long-term experiment. Replicate populations started from each progenitor evolved in four environments. We found that deep and shallow phylogenetic histories both contributed significantly to differences in evolved fitness, though by different amounts in different selection environments. With one exception, chance effects were not significant. Whereas the effect of deep history did not follow any detectable pattern, effects of shallow history followed a pattern of diminishing returns whereby fitter ancestors had smaller fitness increases. These results are consistent with adaptive evolution being contingent on the interaction of several evolutionary forces but demonstrate that the nature of these interactions is not fixed and may not be predictable even when the role of chance is small.


Asunto(s)
Adaptación Fisiológica , Evolución Molecular , Adaptación Fisiológica/genética , Bacterias/genética , Escherichia coli/genética , Filogenia
4.
J Mammal ; 103(3): 560-575, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35707679

RESUMEN

Knowledge of population biological parameters can contribute to assessing the resilience of a population in the face of increasing anthropogenic pressures. Southern Hemisphere long-finned pilot whales (Globicephala melas edwardii) are susceptible to high rates of live stranding-related mortality. However, the biological parameters of this population largely are unknown. In this study, age, growth, allometry, and sexual dimorphism are described using teeth and external body measurements obtained from 515 male, 776 female, and 229 individuals of unknown sex, stranded on the New Zealand coastline between 1948 and 2017. Maximum ages of 31 and 38 years were estimated for males (n = 163) and females (n = 239), respectively. Females ranged in length from 160 to 500 cm (modal size class 400-449 cm) and males from 165 to 622 cm (modal size class 500-549 cm). Length-at-birth for both sexes was estimated at 170 cm using a logistic regression model. Growth models for both sexes indicated a preliminary rapid growth phase followed by a second phase of slower growth. For males, a two-phase growth model also indicated a moderate growth spurt around the average age at attainment of sexual maturity (ca.12-13 years). Asymptotic lengths were estimated at 570 and 438 cm for males and females, respectively. We found strong evidence of sexual size dimorphism, with males significantly larger than females for 13 of 14 external measurements. We also found sexual dimorphism with respect to shape, with males having proportionally longer pectoral fins, wider tail flukes, and taller dorsal fins, than females. Estimates of length-at-birth, maximum ages, and sexual shape dimorphism for G. m. edwardii differed from those previously reported for the North Atlantic subspecies (G. m. melas), which may indicate subspecies or population-level differences in morphology, longevity, and sociality.

5.
PeerJ ; 9: e11090, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33954031

RESUMEN

Novel tools and methods for monitoring marine environments can improve efficiency but must not compromise long-term data records. Quantitative comparisons between new and existing methods are therefore required to assess their compatibility for monitoring. Monitoring of shallow water coral reefs is typically conducted using diver-based collection of benthic images along transects. Diverless systems for obtaining underwater images (e.g. towed-cameras, remotely operated vehicles, autonomous underwater vehicles) are increasingly used for mapping coral reefs. Of these imaging platforms, towed-cameras offer a practical, low cost and efficient method for surveys but their utility for repeated measures in monitoring studies has not been tested. We quantitatively compare a towed-camera approach to repeated surveys of shallow water coral reef benthic assemblages on fixed transects, relative to benchmark data from diver photo-transects. Differences in the percent cover detected by the two methods was partly explained by differences in the morphology of benthic groups. The reef habitat and physical descriptors of the site-slope, depth and structural complexity-also influenced the comparability of data, with differences between the tow-camera and the diver data increasing with structural complexity and slope. Differences between the methods decreased when a greater number of images were collected per tow-camera transect. We attribute lower image quality (variable perspective, exposure and focal distance) and lower spatial accuracy and precision of the towed-camera transects as the key reasons for differences in the data from the two methods and suggest changes to the sampling design to improve the application of tow-cameras to monitoring.

6.
PLoS One ; 12(8): e0183669, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28829820

RESUMEN

The potential effectiveness of marine protected areas (MPAs) as a conservation tool for large sharks has been questioned due to the limited spatial extent of most MPAs in contrast to the complex life history and high mobility of many sharks. Here we evaluated the movement dynamics of a highly migratory apex predatory shark (tiger shark Galeocerdo cuvier) at the Galapagos Marine Reserve (GMR). Using data from satellite tracking passive acoustic telemetry, and stereo baited remote underwater video, we estimated residency, activity spaces, site fidelity, distributional abundances and migration patterns from the GMR and in relation to nesting beaches of green sea turtles (Chelonia mydas), a seasonally abundant and predictable prey source for large tiger sharks. Tiger sharks exhibited a high degree of philopatry, with 93% of the total satellite-tracked time across all individuals occurring within the GMR. Large sharks (> 200 cm TL) concentrated their movements in front of the two most important green sea turtle-nesting beaches in the GMR, visiting them on a daily basis during nocturnal hours. In contrast, small sharks (< 200 cm TL) rarely visited turtle-nesting areas and displayed diurnal presence at a third location where only immature sharks were found. Small and some large individuals remained in the three study areas even outside of the turtle-nesting season. Only two sharks were satellite-tracked outside of the GMR, and following long-distance migrations, both individuals returned to turtle-nesting beaches at the subsequent turtle-nesting season. The spatial patterns of residency and site fidelity of tiger sharks suggest that the presence of a predictable source of prey and suitable habitats might reduce the spatial extent of this large shark that is highly migratory in other parts of its range. This highly philopatric behaviour enhances the potential effectiveness of the GMR for their protection.


Asunto(s)
Ecosistema , Conducta Predatoria , Tiburones/fisiología , Migración Animal , Animales , Océano Atlántico , Femenino , Masculino , Densidad de Población , Tortugas
7.
Ecol Evol ; 6(18): 6648-6661, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27777737

RESUMEN

Many large, fishery-targeted predatory species have attained very high relative densities as a direct result of protection by no-take marine reserves. Indirect effects, via interactions with targeted species, may also occur for species that are not themselves targeted by fishing. In some temperate rocky reef ecosystems, indirect effects have caused profound changes in community structure, notably the restoration of predator-urchin-macroalgae trophic cascades. Yet, indirect effects on small benthic reef fishes remain poorly understood, perhaps because of behavioral associations with complex, refuge-providing habitats. Few, if any, studies have evaluated any potential effects of marine reserves on habitat associations in small benthic fishes. We surveyed densities of small benthic fishes, including some endemic species of triplefin (Tripterygiidae), along with fine-scale habitat features in kelp forests on rocky reefs in and around multiple marine reserves in northern New Zealand over 3 years. Bayesian generalized linear mixed models were used to evaluate evidence for (1) main effects of marine reserve protection, (2) associations with habitat gradients, including complexity, and (3) differences in habitat associations inside versus outside reserves. No evidence of overall main effects of marine reserves on species richness or densities of fishes was found. Both richness and densities showed strong associations with gradients in habitat features, particularly habitat complexity. In addition, some species exhibited reserve-by-habitat interactions, having different associations with habitat gradients inside versus outside marine reserves. Two species (Ruanoho whero and Forsterygion flavonigrum) showed stronger positive associations with habitat complexity inside reserves. These results are consistent with the presence of a behavioral risk effect, whereby prey fishes are more strongly attracted to habitats that provide refuge from predation in areas where predators are more abundant. This work highlights the importance of habitat structure and the potential for fishing to affect behavioral interactions and the interspecific dynamic attributes of community structure beyond simple predator-prey consumption and archetypal trophic cascades.

8.
Ecology ; 93(12): 2526-32, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23431584

RESUMEN

Zero-inflated versions of standard distributions for count data are often required in order to account for excess zeros when modeling the abundance of organisms. Such distributions typically have as parameters lambda, the mean of the count distribution, and pi, the probability of an excess zero. Implementations of zero-inflated models in ecology typically model lambda using a set of predictor variables, and pi is fit either as a constant or with its own separate model. Neither of these approaches makes use of any relationship that might exist between pi and lambda. However, for many species, the rate of occupancy is closely and positively related to its average abundance. Here, this relationship was incorporated into the model for zero inflation by functionally linking pi to lambda, and was demonstrated in a study of snapper (Pagrus auratus) in and around a marine reserve. This approach has several potential practical advantages, including better computational performance and more straightforward model interpretation. It is concluded that, where appropriate, directly linking pi to lambda can produce more ecologically accurate and parsimonious statistical models of species abundance data.


Asunto(s)
Ecosistema , Peces/fisiología , Modelos Biológicos , Animales , Conservación de los Recursos Naturales , Monitoreo del Ambiente , Dinámica Poblacional , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...