Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
ChemMedChem ; 19(6): e202300590, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38372199

RESUMEN

We report the development of BioPhysical and Active Learning Screening (BioPALS); a rapid and versatile hit identification protocol combining AI-powered virtual screening with a GCI-driven biophysical confirmation workflow. Its application to the BRPF1b bromodomain afforded a range of novel micromolar binders with favorable ADMET properties. In addition to the excellent in silico/in vitro confirmation rate demonstrated with BRPF1b, binding kinetics were determined, and binding topologies predicted for all hits. BioPALS is a lean, data-rich, and standardized approach to hit identification applicable to a wide range of biological targets.


Asunto(s)
Dominios Proteicos
2.
Nat Chem ; 15(4): 560-568, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36894702

RESUMEN

Ribosomally synthesized and post-translationally modified peptide natural products have provided many highly unusual scaffolds. This includes the intriguing alkaloids crocagins, which possess a tetracyclic core structure and whose biosynthesis has remained enigmatic. Here we use in vitro experiments to demonstrate that three proteins, CgnB, CgnC and CgnE, are sufficient for the production of the hallmark tetracyclic crocagin core from the precursor peptide CgnA. The crystal structures of the homologues CgnB and CgnE reveal them to be the founding members of a peptide-binding protein family and allow us to rationalize their distinct functions. We further show that the hydrolase CgnD liberates the crocagin core scaffold, which is subsequently N-methylated by CgnL. These insights allow us to propose a biosynthetic scheme for crocagins. Bioinformatic analyses based on these data led to the discovery of related biosynthetic pathways that may provide access to a structurally diverse family of peptide-derived pyrroloindoline alkaloids.


Asunto(s)
Proteínas , Unión Proteica , Proteínas/química , Proteínas/metabolismo , Alcaloides/química , Alcaloides/metabolismo , Péptidos Cíclicos/química , Péptidos Cíclicos/metabolismo , Zinc/química , Zinc/metabolismo , Multimerización de Proteína , Modelos Moleculares , Estructura Terciaria de Proteína , Estructura Cuaternaria de Proteína , Biocatálisis
3.
ACS Appl Nano Mater ; 5(10): 15362-15368, 2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-36338330

RESUMEN

The maturation of spirit in wooden casks is key to the production of whisky, a hugely popular and valuable product, with the transfer and reaction of molecules from the wooden cask with the alcoholic spirit imparting color and flavor. However, time in the cask adds significant cost to the final product, requiring expensive barrels and decades of careful storage. Thus, many producers are concerned with what "age" means in terms of the chemistry and flavor profiles of whisky. We demonstrate here a colorimetric test for spirit "agedness" based on the formation of gold nanoparticles (NPs) by whisky. Gold salts were reduced by barrel-aged spirit and produce colored gold NPs with distinct optical properties. Information from an extinction profile, such as peak position, growth rate, or profile shape, was analyzed, and our assay output was correlated with measurements of the whisky sample makeup, assays for key functional groups, and spiking experiments to explore the mechanism in more detail. We conclude that age is not just a number, that the chemical fingerprint of key flavor compounds is a useful marker for determining whisky "age", and that our simple reduction assay could assist in defining the aged character of a whisky and become a useful future tool on the warehouse floor.

4.
Life Sci Alliance ; 5(12)2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35944929

RESUMEN

ARF tumor suppressor protein is a key regulator of the MDM2-p53 signaling axis. ARF interferes with MDM2-mediated ubiquitination and degradation of p53 by sequestering MDM2 in the nucleolus and preventing MDM2-p53 interaction and nuclear export of p53. Moreover, ARF also directly inhibits MDM2 ubiquitin ligase (E3) activity, but the mechanism remains elusive. Here, we apply nuclear magnetic resonance and biochemical analyses to uncover the mechanism of ARF-mediated inhibition of MDM2 E3 activity. We show that MDM2 acidic and zinc finger domains (AD-ZnF) form a weak intramolecular interaction with the RING domain, where the binding site overlaps with the E2∼ubiquitin binding surface and thereby partially reduces MDM2 E3 activity. Binding of human N-terminal 32 residues of p14ARF to the acidic domain of MDM2 strengthens the AD-ZnF-RING domain interaction. Furthermore, the N-terminal RxFxV motifs of p14ARF participate directly in the MDM2 RING domain interaction. This bivalent binding mode of p14ARF to MDM2 acidic and RING domains restricts E2∼ubiquitin recruitment and massively hinders MDM2 E3 activity. These findings elucidate the mechanism by which ARF inhibits MDM2 E3 activity.


Asunto(s)
Proteínas Proto-Oncogénicas c-mdm2 , Proteína p14ARF Supresora de Tumor , Ubiquitina-Proteína Ligasas , Humanos , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas c-mdm2/química , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Proteína p14ARF Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
5.
Proc Natl Acad Sci U S A ; 119(36): e2202795119, 2022 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-36037362

RESUMEN

Parasitic helminth infections, while a major cause of neglected tropical disease burden, negatively correlate with the incidence of immune-mediated inflammatory diseases such as inflammatory bowel diseases (IBD). To evade expulsion, helminths have developed sophisticated mechanisms to regulate their host's immune responses. Controlled experimental human helminth infections have been assessed clinically for treating inflammatory conditions; however, such a radical therapeutic modality has challenges. An alternative approach is to harness the immunomodulatory properties within the worm's excretory-secretory (ES) complement, its secretome. Here, we report a biologics discovery and validation pipeline to generate and screen in vivo a recombinant cell-free secretome library of helminth-derived immunomodulatory proteins. We successfully expressed 78 recombinant ES proteins from gastrointestinal hookworms and screened the crude in vitro translation reactions for anti-IBD properties in a mouse model of acute colitis. After statistical filtering and ranking, 20 proteins conferred significant protection against various parameters of colitis. Lead candidates from distinct protein families, including annexins, transthyretins, nematode-specific retinol-binding proteins, and SCP/TAPS were identified. Representative proteins were produced in mammalian cells and further validated, including ex vivo suppression of inflammatory cytokine secretion by T cells from IBD patient colon biopsies. Proteins identified herein offer promise as novel, safe, and mechanistically differentiated biologics for treating the globally increasing burden of inflammatory diseases.


Asunto(s)
Antiinflamatorios , Productos Biológicos , Colitis , Proteínas del Helminto , Enfermedades Inflamatorias del Intestino , Animales , Antiinflamatorios/farmacología , Productos Biológicos/farmacología , Colitis/tratamiento farmacológico , Proteínas del Helminto/genética , Proteínas del Helminto/farmacología , Helmintos , Humanos , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Enfermedades Inflamatorias del Intestino/parasitología , Ratones
6.
ACS Sens ; 7(5): 1336-1346, 2022 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-35427452

RESUMEN

Genetically encoded potassium indicators lack optimal binding affinity for monitoring intracellular dynamics in mammalian cells. Through structure-guided design and genome mining of potassium binding proteins, we developed green fluorescent potassium indicators with a broad range of binding affinities. KRaION1 (K+ ratiometric indicator for optical imaging based on mNeonGreen 1), based on the insertion of a potassium binding protein, Kbp, from E. coli (Ec-Kbp) into the fluorescent protein mNeonGreen, exhibits an isotonically measured Kd of 69 ± 10 mM (mean ± standard deviation used throughout). We identified Ec-Kbp's binding site using NMR spectroscopy to detect protein-thallium scalar couplings and refined the structure of Ec-Kbp in its potassium-bound state. Guided by this structure, we modified KRaION1, yielding KRaION1/D9N and KRaION2, which exhibit isotonically measured Kd's of 138 ± 21 and 96 ± 9 mM. We identified four Ec-Kbp homologues as potassium binding proteins, which yielded indicators with isotonically measured binding affinities in the 39-112 mM range. KRaIONs functioned in HeLa cells, but the Kd values differed from the isotonically measured case. We found that, by tuning the experimental conditions, Kd values could be obtained that were consistent in vitro and in vivo. We thus recommend characterizing potassium indicator Kd in the physiological context of interest before application.


Asunto(s)
Escherichia coli , Potasio , Animales , Proteínas Portadoras/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Fluorescentes Verdes/química , Células HeLa , Humanos , Mamíferos/metabolismo , Imagen Óptica/métodos
7.
Microb Biotechnol ; 15(7): 2126-2139, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35312165

RESUMEN

The methylotrophic yeast Pichia pastoris is commonly used for the production of recombinant proteins at scale. The identification of an optimally overexpressing strain following transformation can be time and reagent consuming. Fluorescent reporters like GFP have been used to assist identification of superior producers, but their relatively big size, maturation requirements and narrow temperature range restrict their applications. Here, we introduce the use of iLOV, a flavin-based fluorescent protein, as a fluorescent marker to identify P. pastoris high-yielding strains easily and rapidly. The use of this fluorescent protein as a fusion partner is exemplified by the production of the antimicrobial peptide NI01, a difficult target to overexpress in its native form. iLOV fluorescence correlated well with protein expression level and copy number of the chromosomally integrated gene. An easy and simple medium-throughput plate-based screen directly following transformation is demonstrated for low complexity screening, while a high-throughput method using fluorescence-activated cell sorting (FACS) allowed for comprehensive library screening. Both codon optimization of the iLOV_NI01 fusion cassettes and different integration strategies into the P. pastoris genome were tested to produce and isolate a high-yielding strain. Checking the genetic stability, process reproducibility and following the purification of the active native peptide are eased by visualization of and efficient cleavage from the iLOV reporter. We show that this system can be used for expression and screening of several different antimicrobial peptides recombinantly produced in P. pastoris.


Asunto(s)
Péptidos Antimicrobianos , Pichia , Pichia/genética , Pichia/metabolismo , Proteínas Recombinantes/metabolismo , Reproducibilidad de los Resultados , Saccharomycetales
8.
Nat Chem Biol ; 18(4): 422-431, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35027744

RESUMEN

Ubiquitin (Ub) chain types govern distinct biological processes. K48-linked polyUb chains target substrates for proteasomal degradation, but the mechanism of Ub chain synthesis remains elusive due to the transient nature of Ub handover. Here, we present the structure of a chemically trapped complex of the E2 UBE2K covalently linked to donor Ub and acceptor K48-linked di-Ub, primed for K48-linked Ub chain synthesis by a RING E3. The structure reveals the basis for acceptor Ub recognition by UBE2K active site residues and the C-terminal Ub-associated (UBA) domain, to impart K48-linked Ub specificity and catalysis. Furthermore, the structure unveils multiple Ub-binding surfaces on the UBA domain that allow distinct binding modes for K48- and K63-linked Ub chains. This multivalent Ub-binding feature serves to recruit UBE2K to ubiquitinated substrates to overcome weak acceptor Ub affinity and thereby promote chain elongation. These findings elucidate the mechanism of processive K48-linked polyUb chain formation by UBE2K.


Asunto(s)
Poliubiquitina , Ubiquitina , Poliubiquitina/metabolismo , Unión Proteica , Dominios Proteicos , Ubiquitina/química , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitinación
9.
J Mol Cell Cardiol ; 165: 86-102, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34999055

RESUMEN

Cyclic AMP is a ubiquitous second messenger used to transduce intracellular signals from a variety of Gs-coupled receptors. Compartmentalisation of protein intermediates within the cAMP signaling pathway underpins receptor-specific responses. The cAMP effector proteins protein-kinase A and EPAC are found in complexes that also contain phosphodiesterases whose presence ensures a coordinated cellular response to receptor activation events. Popeye domain containing (POPDC) proteins are the most recent class of cAMP effectors to be identified and have crucial roles in cardiac pacemaking and conduction. We report the first observation that POPDC proteins exist in complexes with members of the PDE4 family in cardiac myocytes. We show that POPDC1 preferentially binds the PDE4A sub-family via a specificity motif in the PDE4 UCR1 region and that PDE4s bind to the Popeye domain of POPDC1 in a region known to be susceptible to a mutation that causes human disease. Using a cell-permeable disruptor peptide that displaces the POPDC1-PDE4 complex we show that PDE4 activity localized to POPDC1 modulates cycle length of spontaneous Ca2+ transients firing in intact mouse sinoatrial nodes.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico , AMP Cíclico , Animales , Proteínas Portadoras/metabolismo , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/metabolismo , Ratones , Hidrolasas Diéster Fosfóricas/metabolismo , Sistemas de Mensajero Secundario , Transducción de Señal
10.
J Org Chem ; 87(1): 258-270, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34913698

RESUMEN

The (+) and (-) enantiomers of a new turn-inducing cyclopropyl dipeptide mimic have been synthesized and evaluated. The mimic derives its turn-inducing capabilities solely from the cyclopropyl group and without the conformational biasing that would be provided by side-chain substituents. The mimic and peptide-mimic hybrids prepared from it have been studied using a combination of spectroscopic techniques (NMR, IR, and CD). The dipeptide mimic itself displays intramolecular hydrogen bonding in organic solvents, which differs from that observed in natural peptide turns. In contrast, more elaborate peptide-mimic hybrids exhibit hydrogen bonding characteristics that vary with solvent but are consistent with structures found in the tetrapeptide portion (i → i + 3) of a native ß-turn.


Asunto(s)
Dipéptidos , Péptidos , Enlace de Hidrógeno , Conformación Molecular , Estereoisomerismo
11.
Cells ; 10(9)2021 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-34571955

RESUMEN

An exchange protein directly activated by cAMP 1 (EPAC1) is an intracellular sensor for cAMP that is involved in a wide variety of cellular and physiological processes in health and disease. However, reagents are lacking to study its association with intracellular cAMP nanodomains. Here, we use non-antibody Affimer protein scaffolds to develop isoform-selective protein binders of EPAC1. Phage-display screens were carried out against purified, biotinylated human recombinant EPAC1ΔDEP protein (amino acids 149-811), which identified five potential EPAC1-selective Affimer binders. Dot blots and indirect ELISA assays were next used to identify Affimer 780A as the top EPAC1 binder. Mutagenesis studies further revealed a potential interaction site for 780A within the EPAC1 cyclic nucleotide binding domain (CNBD). In addition, 780A was shown to co-precipitate EPAC1 from transfected cells and co-localize with both wild-type EPAC1 and a mis-targeting mutant of EPAC1(K212R), predominantly in perinuclear and cytosolic regions of cells, respectively. As a novel EPAC1-selective binder, 780A therefore has the potential to be used in future studies to further understand compartmentalization of the cAMP-EPAC1 signaling system.


Asunto(s)
AMP Cíclico/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Animales , Células COS , Línea Celular , Línea Celular Tumoral , Núcleo Celular/metabolismo , Chlorocebus aethiops , Citosol/metabolismo , Humanos , Transducción de Señal/fisiología
12.
mBio ; 12(5): e0116321, 2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34544280

RESUMEN

During the human papillomavirus 16 (HPV16) life cycle, the E2 protein interacts with host factors to regulate viral transcription, replication, and genome segregation/retention. Our understanding of host partner proteins and their roles in E2 functions remains incomplete. Here we demonstrate that CK2 phosphorylation of E2 on serine 23 promotes interaction with TopBP1 in vitro and in vivo and that E2 is phosphorylated on this residue during the HPV16 life cycle. We investigated the consequences of mutating serine 23 on E2 functions. E2-S23A (E2 with serine 23 mutated to alanine) activates and represses transcription identically to E2-WT (wild-type E2), and E2-S23A is as efficient as E2-WT in transient replication assays. However, E2-S23A has compromised interaction with mitotic chromatin compared with E2-WT. In E2-WT cells, both E2 and TopBP1 levels increase during mitosis compared with vector control cells. In E2-S23A cells, neither E2 nor TopBP1 levels increase during mitosis. Introduction of the S23A mutation into the HPV16 genome resulted in delayed immortalization of human foreskin keratinocytes (HFK) and higher episomal viral genome copy number in resulting established HFK. Remarkably, S23A cells had a disrupted viral life cycle in organotypic raft cultures, with a loss of E2 expression and a failure of viral replication. Overall, our results demonstrate that CK2 phosphorylation of E2 on serine 23 promotes interaction with TopBP1 and that this interaction is critical for the viral life cycle. IMPORTANCE Human papillomaviruses are causative agents in around 5% of all cancers, with no specific antiviral therapeutics available for treating infections or resultant cancers. In this report, we demonstrate that phosphorylation of HPV16 E2 by CK2 promotes formation of a complex with the cellular protein TopBP1 in vitro and in vivo. This complex results in stabilization of E2 during mitosis. We demonstrate that CK2 phosphorylates E2 on serine 23 in vivo and that CK2 inhibitors disrupt the E2-TopBP1 complex. Mutation of E2 serine 23 to alanine disrupts the HPV16 life cycle, hindering immortalization and disrupting the viral life cycle, demonstrating a critical function for this residue.


Asunto(s)
Proteínas Portadoras/metabolismo , Cromatina , Proteínas de Unión al ADN/metabolismo , Interacciones Huésped-Patógeno/genética , Papillomavirus Humano 16/genética , Mitosis , Proteínas Nucleares/metabolismo , Proteínas Oncogénicas Virales/metabolismo , Serina/genética , Proteínas Portadoras/genética , Quinasa de la Caseína II/genética , Quinasa de la Caseína II/metabolismo , Proteínas de Unión al ADN/genética , Papillomavirus Humano 16/patogenicidad , Humanos , Queratinocitos/virología , Estadios del Ciclo de Vida , Proteínas Nucleares/genética , Proteínas Oncogénicas Virales/genética , Fosforilación , Serina/metabolismo , Replicación Viral
13.
Sci Adv ; 6(38)2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32948590

RESUMEN

Cellular cross-talk between ubiquitination and other posttranslational modifications contributes to the regulation of numerous processes. One example is ADP-ribosylation of the carboxyl terminus of ubiquitin by the E3 DTX3L/ADP-ribosyltransferase PARP9 heterodimer, but the mechanism remains elusive. Here, we show that independently of PARP9, the conserved carboxyl-terminal RING and DTC (Deltex carboxyl-terminal) domains of DTX3L and other human Deltex proteins (DTX1 to DTX4) catalyze ADP-ribosylation of ubiquitin's Gly76 Structural studies reveal a hitherto unknown function of the DTC domain in binding NAD+ Deltex RING domain recruits E2 thioesterified with ubiquitin and juxtaposes it with NAD+ bound to the DTC domain to facilitate ADP-ribosylation of ubiquitin. This ubiquitin modification prevents its activation but is reversed by the linkage nonspecific deubiquitinases. Our study provides mechanistic insights into ADP-ribosylation of ubiquitin by Deltex E3s and will enable future studies directed at understanding the increasingly complex network of ubiquitin cross-talk.


Asunto(s)
Ubiquitina-Proteína Ligasas , Ubiquitina , ADP-Ribosilación , Humanos , NAD/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
14.
Org Lett ; 22(11): 4424-4428, 2020 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-32406695

RESUMEN

We report a simple reductive amination protocol to ligate two peptides, while simultaneously installing a ß-turn mimic at the ligation junction. This strategy uses commercially available materials, mild chemical conditions, and a chemoselective ligation reaction of unprotected peptide substrates accessed through standard solid phase methods. This system was implemented in a designed ß-hairpin system, and biophysical analysis demonstrates effective mimicry of the ß-turn.

15.
RNA ; 26(3): 265-277, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31852734

RESUMEN

Staufen is a dsRNA-binding protein involved in many aspects of RNA regulation, such as mRNA transport, Staufen-mediated mRNA decay and the regulation of mRNA translation. It is a modular protein characterized by the presence of conserved consensus amino acid sequences that fold into double-stranded RNA binding domains (RBDs) as well as degenerated RBDs that are instead involved in protein-protein interactions. The variety of biological processes in which Staufen participates in the cell suggests that this protein associates with many diverse RNA targets, some of which have been identified experimentally. Staufen binding mediates the recruitment of effectors via protein-protein and protein-RNA interactions. The structural determinants of a number of these interactions, as well as the structure of full-length Staufen, remain unknown. Here, we present the first solution structure models for full-length hStaufen155, showing that its domains are arranged as beads-on-a-string connected by flexible linkers. In analogy with other nucleic acid-binding proteins, this could underpin Stau1 functional plasticity.


Asunto(s)
Proteínas del Citoesqueleto/ultraestructura , Conformación Proteica , Proteínas de Unión al ARN/ultraestructura , Secuencia de Aminoácidos/genética , Proteínas del Citoesqueleto/química , Humanos , Conformación de Ácido Nucleico , Biosíntesis de Proteínas , Dominios y Motivos de Interacción de Proteínas/genética , Estabilidad del ARN/genética , Proteínas de Unión al ARN/química
16.
Biosci Rep ; 39(7)2019 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-31273060

RESUMEN

Intracellular lipid-binding proteins (iLBPs) of the fatty acid-binding protein (FABP) family of animals transport, mainly fatty acids or retinoids, are confined to the cytosol and have highly similar 3D structures. In contrast, nematodes possess fatty acid-binding proteins (nemFABPs) that are secreted into the perivitelline fluid surrounding their developing embryos. We report structures of As-p18, a nemFABP of the large intestinal roundworm Ascaris suum, with ligand bound, determined using X-ray crystallography and nuclear magnetic resonance spectroscopy. In common with other FABPs, As-p18 comprises a ten ß-strand barrel capped by two short α-helices, with the carboxylate head group of oleate tethered in the interior of the protein. However, As-p18 exhibits two distinctive longer loops amongst ß-strands not previously seen in a FABP. One of these is adjacent to the presumed ligand entry portal, so it may help to target the protein for efficient loading or unloading of ligand. The second, larger loop is at the opposite end of the molecule and has no equivalent in any iLBP structure yet determined. As-p18 preferentially binds a single 18-carbon fatty acid ligand in its central cavity but in an orientation that differs from iLBPs. The unusual structural features of nemFABPs may relate to resourcing of developing embryos of nematodes.


Asunto(s)
Ascaris suum/química , Proteínas de Unión a Ácidos Grasos/química , Proteínas del Helminto/química , Óvulo/química , Animales , Ascaris suum/metabolismo , Proteínas de Unión a Ácidos Grasos/metabolismo , Proteínas del Helminto/metabolismo , Ligandos , Óvulo/metabolismo , Unión Proteica , Dominios Proteicos , Estructura Secundaria de Proteína
17.
Colloids Surf A Physicochem Eng Asp ; 534: 120-129, 2017 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-29276339

RESUMEN

Foams and surfactants are relatively rare in biology because of their potential to harm cell membranes and other delicate tissues. However, in recent work we have identified and characterized a number of natural surfactant proteins found in the foam nests of tropical frogs and other unusual sources. These proteins, and their associated foams, are relatively stable and bio-compatible, but with intriguing molecular structures that reveal a new class of surfactant activity. Here we review the structures and functional mechanisms of some of these proteins as revealed by experiments involving a range of biophysical and biochemical techniques, with additional mechanistic support coming from more recent site-directed mutagenesis studies.

18.
Mol Cell ; 68(2): 456-470.e10, 2017 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-29053960

RESUMEN

RING and U-box E3 ubiquitin ligases regulate diverse eukaryotic processes and have been implicated in numerous diseases, but targeting these enzymes remains a major challenge. We report the development of three ubiquitin variants (UbVs), each binding selectively to the RING or U-box domain of a distinct E3 ligase: monomeric UBE4B, phosphorylated active CBL, or dimeric XIAP. Structural and biochemical analyses revealed that UbVs specifically inhibited the activity of UBE4B or phosphorylated CBL by blocking the E2∼Ub binding site. Surprisingly, the UbV selective for dimeric XIAP formed a dimer to stimulate E3 activity by stabilizing the closed E2∼Ub conformation. We further verified the inhibitory and stimulatory functions of UbVs in cells. Our work provides a general strategy to inhibit or activate RING/U-box E3 ligases and provides a resource for the research community to modulate these enzymes.


Asunto(s)
Descubrimiento de Drogas/métodos , Activadores de Enzimas , Inhibidores Enzimáticos , Multimerización de Proteína/efectos de los fármacos , Proteínas Supresoras de Tumor , Complejos de Ubiquitina-Proteína Ligasa , Proteína Inhibidora de la Apoptosis Ligada a X , Activadores de Enzimas/química , Activadores de Enzimas/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Células HEK293 , Células HeLa , Humanos , Proteínas Supresoras de Tumor/agonistas , Proteínas Supresoras de Tumor/antagonistas & inhibidores , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/antagonistas & inhibidores , Complejos de Ubiquitina-Proteína Ligasa/genética , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Ubiquitina-Proteína Ligasas , Proteína Inhibidora de la Apoptosis Ligada a X/agonistas , Proteína Inhibidora de la Apoptosis Ligada a X/antagonistas & inhibidores , Proteína Inhibidora de la Apoptosis Ligada a X/genética , Proteína Inhibidora de la Apoptosis Ligada a X/metabolismo
20.
Biochemistry ; 56(37): 4985-4991, 2017 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-28820590

RESUMEN

DNA three-way junctions (3WJs) are branched structures that serve as important biological intermediates and as components in DNA nanostructures. We recently derived the global structure of a fully complementary 3WJ and found that it contained unpaired bases at the branchpoint, which is consistent with previous observations of branch flexibility and branchpoint reactivity. By combining high-resolution single-molecule Förster resonance energy transfer, molecular modeling, time-resolved ensemble fluorescence spectroscopy, and the first 19F nuclear magnetic resonance observations of fully complementary 3WJs, we now show that the 3WJ structure can adopt multiple distinct conformations depending upon the sequence at the branchpoint. A 3WJ with a GC-rich branchpoint adopts an open conformation with unpaired bases at the branch and at least one additional conformation with an increased number of base interactions at the branchpoint. This structural diversity has implications for branch interactions and processing in vivo and for technological applications.


Asunto(s)
ADN Complementario/química , ADN/química , Modelos Moleculares , Emparejamiento Base , ADN/metabolismo , ADN Complementario/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Secuencia Rica en GC , Simulación de Dinámica Molecular , Resonancia Magnética Nuclear Biomolecular , Conformación de Ácido Nucleico , Imagen Individual de Molécula , Espectrometría de Fluorescencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...