Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
JCI Insight ; 9(4)2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38385748

RESUMEN

BACKGROUNDWhile the benefits of statin therapy on atherosclerotic cardiovascular disease are clear, patients often experience mild to moderate skeletal myopathic symptoms, the mechanism for which is unknown. This study investigated the potential effect of high-dose atorvastatin therapy on skeletal muscle mitochondrial function and whole-body aerobic capacity in humans.METHODSEight overweight (BMI, 31.9 ± 2.0) but otherwise healthy sedentary adults (4 females, 4 males) were studied before (day 0) and 14, 28, and 56 days after initiating atorvastatin (80 mg/d) therapy.RESULTSMaximal ADP-stimulated respiration, measured in permeabilized fiber bundles from muscle biopsies taken at each time point, declined gradually over the course of atorvastatin treatment, resulting in > 30% loss of skeletal muscle mitochondrial oxidative phosphorylation capacity by day 56. Indices of in vivo muscle oxidative capacity (via near-infrared spectroscopy) decreased by 23% to 45%. In whole muscle homogenates from day 0 biopsies, atorvastatin inhibited complex III activity at midmicromolar concentrations, whereas complex IV activity was inhibited at low nanomolar concentrations.CONCLUSIONThese findings demonstrate that high-dose atorvastatin treatment elicits a striking progressive decline in skeletal muscle mitochondrial respiratory capacity, highlighting the need for longer-term dose-response studies in different patient populations to thoroughly define the effect of statin therapy on skeletal muscle health.FUNDINGNIH R01 AR071263.


Asunto(s)
Inhibidores de Hidroximetilglutaril-CoA Reductasas , Enfermedades Musculares , Masculino , Adulto , Femenino , Humanos , Atorvastatina/farmacología , Atorvastatina/metabolismo , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Mitocondrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Mitocondrias , Enfermedades Musculares/metabolismo
3.
Am J Physiol Endocrinol Metab ; 320(5): E938-E950, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33813880

RESUMEN

Elevated mitochondrial hydrogen peroxide (H2O2) emission and an oxidative shift in cytosolic redox environment have been linked to high-fat-diet-induced insulin resistance in skeletal muscle. To test specifically whether increased flux through mitochondrial fatty acid oxidation, in the absence of elevated energy demand, directly alters mitochondrial function and redox state in muscle, two genetic models characterized by increased muscle ß-oxidation flux were studied. In mice overexpressing peroxisome proliferator-activated receptor-α in muscle (MCK-PPARα), lipid-supported mitochondrial respiration, membrane potential (ΔΨm), and H2O2 production rate (JH2O2) were increased, which coincided with a more oxidized cytosolic redox environment, reduced muscle glucose uptake, and whole body glucose intolerance despite an increased rate of energy expenditure. Similar results were observed in lipin-1-deficient, fatty-liver dystrophic mice, another model characterized by increased ß-oxidation flux and glucose intolerance. Crossing MCAT (mitochondria-targeted catalase) with MCK-PPARα mice normalized JH2O2 production, redox environment, and glucose tolerance, but surprisingly, both basal and absolute insulin-stimulated rates of glucose uptake in muscle remained depressed. Also surprising, when placed on a high-fat diet, MCK-PPARα mice were characterized by much lower whole body, fat, and lean mass as well as improved glucose tolerance relative to wild-type mice, providing additional evidence that overexpression of PPARα in muscle imposes more extensive metabolic stress than experienced by wild-type mice on a high-fat diet. Overall, the findings suggest that driving an increase in skeletal muscle fatty acid oxidation in the absence of metabolic demand imposes mitochondrial reductive stress and elicits multiple counterbalance metabolic responses in an attempt to restore bioenergetic homeostasis.NEW & NOTEWORTHY Prior work has suggested that mitochondrial dysfunction is an underlying cause of insulin resistance in muscle because it limits fatty acid oxidation and therefore leads to the accumulation of cytotoxic lipid intermediates. The implication has been that therapeutic strategies to accelerate ß-oxidation will be protective. The current study provides evidence that genetically increasing flux through ß-oxidation in muscle imposes reductive stress that is not beneficial but rather detrimental to metabolic regulation.


Asunto(s)
Catalasa/genética , Intolerancia a la Glucosa/genética , Mitocondrias Musculares/metabolismo , Músculo Esquelético/metabolismo , PPAR alfa/genética , Animales , Catalasa/metabolismo , Metabolismo Energético/genética , Intolerancia a la Glucosa/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Transgénicos , Mitocondrias Musculares/genética , Especificidad de Órganos/genética , Oxidación-Reducción , Estrés Oxidativo/genética , PPAR alfa/metabolismo
4.
J Biol Chem ; 295(48): 16207-16216, 2020 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-32747443

RESUMEN

Compensatory changes in energy expenditure occur in response to positive and negative energy balance, but the underlying mechanism remains unclear. Under low energy demand, the mitochondrial electron transport system is particularly sensitive to added energy supply (i.e. reductive stress), which exponentially increases the rate of H2O2 (JH2O2) production. H2O2 is reduced to H2O by electrons supplied by NADPH. NADP+ is reduced back to NADPH by activation of mitochondrial membrane potential-dependent nicotinamide nucleotide transhydrogenase (NNT). The coupling of reductive stress-induced JH2O2 production to NNT-linked redox buffering circuits provides a potential means of integrating energy balance with energy expenditure. To test this hypothesis, energy supply was manipulated by varying flux rate through ß-oxidation in muscle mitochondria minus/plus pharmacological or genetic inhibition of redox buffering circuits. Here we show during both non-ADP- and low-ADP-stimulated respiration that accelerating flux through ß-oxidation generates a corresponding increase in mitochondrial JH2O2 production, that the majority (∼70-80%) of H2O2 produced is reduced to H2O by electrons drawn from redox buffering circuits supplied by NADPH, and that the rate of electron flux through redox buffering circuits is directly linked to changes in oxygen consumption mediated by NNT. These findings provide evidence that redox reactions within ß-oxidation and the electron transport system serve as a barometer of substrate flux relative to demand, continuously adjusting JH2O2 production and, in turn, the rate at which energy is expended via NNT-mediated proton conductance. This variable flux through redox circuits provides a potential compensatory mechanism for fine-tuning energy expenditure to energy balance in real time.


Asunto(s)
Metabolismo Energético , Mitocondrias Musculares/enzimología , NADP Transhidrogenasa AB-Específica/metabolismo , Consumo de Oxígeno , Adenosina Difosfato/metabolismo , Animales , Peróxido de Hidrógeno/metabolismo , Masculino , Ratones , Proteínas Mitocondriales/metabolismo , Oxidación-Reducción
5.
Mol Metab ; 34: 1-15, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32180550

RESUMEN

OBJECTIVE: Estrogen receptor-α (ERα) is a nuclear receptor family member thought to substantially contribute to the metabolic regulation of skeletal muscle. However, previous mouse models utilized to assess the necessity of ERα signaling in skeletal muscle were confounded by altered developmental programming and/or influenced by secondary effects, making it difficult to assign a causal role for ERα. The objective of this study was to determine the role of skeletal muscle ERα in regulating metabolism in the absence of confounding factors of development. METHODS: A novel mouse model was developed allowing for induced deletion of ERα in adult female skeletal muscle (ERαKOism). ERαshRNA was also used to knockdown ERα (ERαKD) in human myotubes cultured from primary human skeletal muscle cells isolated from muscle biopsies from healthy and obese insulin-resistant women. RESULTS: Twelve weeks of HFD exposure had no differential effects on body composition, VO2, VCO2, RER, energy expenditure, and activity counts across genotypes. Although ERαKOism mice exhibited greater glucose intolerance than wild-type (WT) mice after chronic HFD, ex vivo skeletal muscle glucose uptake was not impaired in the ERαKOism mice. Expression of pro-inflammatory genes was altered in the skeletal muscle of the ERαKOism, but the concentrations of these inflammatory markers in the systemic circulation were either lower or remained similar to the WT mice. Finally, skeletal muscle mitochondrial respiratory capacity, oxidative phosphorylation efficiency, and H2O2 emission potential was not affected in the ERαKOism mice. ERαKD in human skeletal muscle cells neither altered differentiation capacity nor caused severe deficits in mitochondrial respiratory capacity. CONCLUSIONS: Collectively, these results suggest that ERα function is superfluous in protecting against HFD-induced skeletal muscle metabolic derangements after postnatal development is complete.


Asunto(s)
Receptor alfa de Estrógeno/metabolismo , Insulina/metabolismo , Mitocondrias/metabolismo , Músculo Esquelético/metabolismo , Animales , Receptor alfa de Estrógeno/deficiencia , Femenino , Humanos , Ratones , Ratones Noqueados , Músculo Esquelético/citología
6.
Diabetes ; 65(11): 3249-3261, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27495226

RESUMEN

Although nicotinamide nucleotide transhydrogenase (NNT)-deficient C57BL/6J (6J) mice are known to be highly susceptible to diet-induced metabolic disease, this notion stems primarily from comparisons of 6J mice to other inbred strains. To date, very few studies have directly compared metabolic disease susceptibility between NNT-deficient 6J mice and NNT-competent C57BL/6 substrains. In this study, comprehensive profiling of the metabolic response to a high-fat/high-sucrose diet (HFD) were compared across time in 6J and C57BL/6NJ (6N) mice. Given that increased peroxide exposure drives insulin resistance, coupled with the fact that NNT regulates peroxide detoxification, it was hypothesized that 6J mice would experience greater derangements in redox homeostasis/metabolic disease upon HFD exposure. Contrary to this, both lines were found to be highly susceptible to diet-induced metabolic disease, as evidenced by impairments in glucose tolerance as early as 24 h into the HFD. Moreover, various markers of the metabolic syndrome, as well as peroxide stress, were actually blunted, rather than exacerbated, in the 6J mice, likely reflecting compensatory increases in alterative redox-buffering pathways. Together, these data provide evidence that the susceptibility to HFD-induced metabolic disease is similar in the 6J and 6N substrains. Given the numerous genetic variances in the 6J stain, including loss of NNT function, these findings suggest that the 6N substrain is the more logical and representative genetic background model for metabolic studies.


Asunto(s)
Dieta Alta en Grasa/efectos adversos , Animales , Desoxiglucosa/metabolismo , Susceptibilidad a Enfermedades , Peróxido de Hidrógeno/metabolismo , Resistencia a la Insulina/fisiología , Enfermedades Metabólicas/etiología , Enfermedades Metabólicas/metabolismo , Ratones Endogámicos C57BL , Mitocondrias/metabolismo
7.
Front Physiol ; 6: 332, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26635618

RESUMEN

The mitochondrial electron transport system (ETS) is responsible for setting and maintaining both the energy and redox charges throughout the cell. Reversible phosphorylation of mitochondrial proteins, particularly via the soluble adenylyl cyclase (sAC)/cyclic AMP (cAMP)/Protein kinase A (PKA) axis, has recently been revealed as a potential mechanism regulating the ETS. However, the governance of cAMP/PKA signaling and its implications on ETS function are incompletely understood. In contrast to prior reports using exogenous bicarbonate, we provide evidence that endogenous CO2 produced by increased tricarboxylic acid (TCA) cycle flux is insufficient to increase mitochondrial cAMP levels, and that exogenous addition of membrane permeant 8Br-cAMP does not enhance mitochondrial respiratory capacity. We also report important non-specific effects of commonly used inhibitors of sAC which preclude their use in studies of mitochondrial function. In isolated liver mitochondria, inhibition of PKA reduced complex I-, but not complex II-supported respiratory capacity. In permeabilized myofibers, inhibition of PKA lowered both the K m and V max for complex I-supported respiration as well as succinate-supported H2O2 emitting potential. In summary, the data provided here improve our understanding of how mitochondrial cAMP production is regulated, illustrate a need for better tools to examine the impact of sAC activity on mitochondrial biology, and suggest that cAMP/PKA signaling contributes to the governance of electron flow through complex I of the ETS.

8.
Biochem J ; 467(2): 271-80, 2015 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-25643703

RESUMEN

Cellular proteins rely on reversible redox reactions to establish and maintain biological structure and function. How redox catabolic (NAD+/NADH) and anabolic (NADP+/NADPH) processes integrate during metabolism to maintain cellular redox homoeostasis, however, is unknown. The present work identifies a continuously cycling mitochondrial membrane potential (ΔΨm)-dependent redox circuit between the pyruvate dehydrogenase complex (PDHC) and nicotinamide nucleotide transhydrogenase (NNT). PDHC is shown to produce H2O2 in relation to reducing pressure within the complex. The H2O2 produced, however, is effectively masked by a continuously cycling redox circuit that links, via glutathione/thioredoxin, to NNT, which catalyses the regeneration of NADPH from NADH at the expense of ΔΨm. The net effect is an automatic fine-tuning of NNT-mediated energy expenditure to metabolic balance at the level of PDHC. In mitochondria, genetic or pharmacological disruptions in the PDHC-NNT redox circuit negate counterbalance changes in energy expenditure. At the whole animal level, mice lacking functional NNT (C57BL/6J) are characterized by lower energy-expenditure rates, consistent with their well-known susceptibility to diet-induced obesity. These findings suggest the integration of redox sensing of metabolic balance with compensatory changes in energy expenditure provides a potential mechanism by which cellular redox homoeostasis is maintained and body weight is defended during periods of positive and negative energy balance.


Asunto(s)
Peróxido de Hidrógeno/metabolismo , Potencial de la Membrana Mitocondrial/fisiología , Mitocondrias Musculares/enzimología , NADP Transhidrogenasa AB-Específica/metabolismo , NADP/metabolismo , Complejo Piruvato Deshidrogenasa/metabolismo , Animales , Inhibidores Enzimáticos/farmacología , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , Mitocondrias Musculares/genética , Proteínas Mitocondriales/antagonistas & inhibidores , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , NADP/genética , NADP Transhidrogenasa AB-Específica/antagonistas & inhibidores , NADP Transhidrogenasa AB-Específica/genética , Oxidación-Reducción/efectos de los fármacos , Complejo Piruvato Deshidrogenasa/antagonistas & inhibidores , Complejo Piruvato Deshidrogenasa/genética
9.
J Appl Physiol (1985) ; 111(6): 1622-8, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21903876

RESUMEN

In liver, the AMP-activated protein kinase kinase (AMPKK) complex was identified as the association of liver kinase B1 (LKB1), mouse protein 25 (MO25α/ß), and Ste-20-related adaptor protein (STRADα/ß); however, this complex has yet to be characterized in skeletal muscle. We demonstrate the expression of the LKB1-MO25-STRAD complex in skeletal muscle, confirm the absence of mRNA splice variants, and report the relative mRNA expression levels of these proteins in control and muscle-specific LKB1 knockout (LKB1(-/-)) mouse muscle. LKB1 detection in untreated control and LKB1(-/-) muscle lysates revealed two protein bands (50 and 60 kDa), although only the heavier band was diminished in LKB1(-/-) samples [55 ± 2.5 and 13 ± 1.5 arbitrary units (AU) in control and LKB1(-/-), respectively, P < 0.01], suggesting that LKB1 is not represented at 50 kDa, as previously cited. The 60-kDa LKB1 band was further confirmed following purification using polyethylene glycol (43 ± 5 and 8.4 ± 4 AU in control and LKB1(-/-), respectively, P < 0.01) and ion-exchange fast protein liquid chromatography. Mass spectrometry confirmed LKB1 protein detection in the 60-kDa protein band, while none was detected in the 50-kDa band. Coimmunoprecipitation assays demonstrated LKB1-MO25-STRAD complex formation. Quantitative PCR revealed significantly reduced LKB1, MO25α, and STRADß mRNA in LKB1(-/-) muscle. These findings demonstrate that the LKB1-MO25-STRAD complex is the principal AMPKK in skeletal muscle.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Músculo Esquelético/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Quinasas de la Proteína-Quinasa Activada por el AMP , Proteínas Quinasas Activadas por AMP , Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras del Transporte Vesicular/química , Proteínas Adaptadoras del Transporte Vesicular/genética , Secuencia de Aminoácidos , Animales , Proteínas de Unión al Calcio , Femenino , Hígado/metabolismo , Masculino , Ratones , Ratones Noqueados , Datos de Secuencia Molecular , Peso Molecular , Complejos Multienzimáticos/química , Complejos Multienzimáticos/metabolismo , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Proteínas Quinasas/química , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/deficiencia , Proteínas Serina-Treonina Quinasas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Distribución Tisular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...