Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
1.
J Infect Dis ; 229(3): 644-647, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38016020

RESUMEN

We analyzed neutralizing antibodies in samples from ancestral + BA.1 and ancestral + BA.4/5 boosted individuals, collected around 5.5 months after booster. Titers of neutralizing antibodies generally decreased compared to a time point early after the bivalent booster immunization. This was more pronounced for individuals without infection history and for recently emerged Omicron variants.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Humanos , Anticuerpos ampliamente neutralizantes , COVID-19/prevención & control , SARS-CoV-2 , Anticuerpos Neutralizantes , Anticuerpos Antivirales
2.
bioRxiv ; 2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37808679

RESUMEN

The antigenic evolution of SARS-CoV-2 requires ongoing monitoring to judge the immune escape of newly arising variants. A surveillance system necessitates an understanding of differences in neutralization titers measured in different assays and using human and animal sera. We compared 18 datasets generated using human, hamster, and mouse sera, and six different neutralization assays. Titer magnitude was lowest in human, intermediate in hamster, and highest in mouse sera. Fold change, immunodominance patterns and antigenic maps were similar among sera. Most assays yielded similar results, except for differences in fold change in cytopathic effect assays. Not enough data was available for conclusively judging mouse sera, but hamster sera were a consistent surrogate for human first-infection sera.

3.
Science ; 382(6666): eadj0070, 2023 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-37797027

RESUMEN

During the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, multiple variants escaping preexisting immunity emerged, causing reinfections of previously exposed individuals. Here, we used antigenic cartography to analyze patterns of cross-reactivity among 21 variants and 15 groups of human sera obtained after primary infection with 10 different variants or after messenger RNA (mRNA)-1273 or mRNA-1273.351 vaccination. We found antigenic differences among pre-Omicron variants caused by substitutions at spike-protein positions 417, 452, 484, and 501. Quantifying changes in response breadth over time and with additional vaccine doses, our results show the largest increase between 4 weeks and >3 months after a second dose. We found changes in immunodominance of different spike regions, depending on the variant an individual was first exposed to, with implications for variant risk assessment and vaccine-strain selection.


Asunto(s)
Antígenos Virales , COVID-19 , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Vacunas de ARNm , Humanos , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Reacciones Cruzadas , SARS-CoV-2/genética , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , Antígenos Virales/genética , Antígenos Virales/inmunología , Vacunas de ARNm/inmunología , Vacunación , Sustitución de Aminoácidos
4.
mBio ; 14(5): e0048823, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37565755

RESUMEN

IMPORTANCE: A/H7 avian influenza viruses cause outbreaks in poultry globally, resulting in outbreaks with significant socio-economical impact and zoonotic risks. Occasionally, poultry vaccination programs have been implemented to reduce the burden of these viruses, which might result in an increased immune pressure accelerating antigenic evolution. In fact, evidence for antigenic diversification of A/H7 influenza viruses exists, posing challenges to pandemic preparedness and the design of vaccination strategies efficacious against drifted variants. Here, we performed a comprehensive analysis of the global antigenic diversity of A/H7 influenza viruses and identified the main substitutions in the hemagglutinin responsible for antigenic evolution in A/H7N9 viruses isolated between 2013 and 2019. The A/H7 antigenic map and knowledge of the molecular determinants of their antigenic evolution add value to A/H7 influenza virus surveillance programs, the design of vaccines and vaccination strategies, and pandemic preparedness.


Asunto(s)
Subtipo H7N9 del Virus de la Influenza A , Gripe Aviar , Gripe Humana , Animales , Humanos , Subtipo H7N9 del Virus de la Influenza A/genética , Hemaglutininas , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Variación Antigénica , Brotes de Enfermedades , Aves de Corral , Gripe Aviar/epidemiología , Gripe Aviar/prevención & control , Gripe Humana/epidemiología , Gripe Humana/prevención & control
6.
Nat Commun ; 14(1): 5224, 2023 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-37633965

RESUMEN

Since emergence of the initial SARS-CoV-2 BA.1, BA.2 and BA.5 variants, Omicron has diversified substantially. Antigenic characterization of these new variants is important to analyze their potential immune escape from population immunity and implications for future vaccine composition. Here, we describe an antigenic map based on human single-exposure sera and live-virus isolates that includes a broad selection of recently emerged Omicron variants such as BA.2.75, BF.7, BQ, XBB and XBF variants. Recent Omicron variants clustered around BA.1 and BA.5 with some variants further extending the antigenic space. Based on this antigenic map we constructed antibody landscapes to describe neutralization profiles after booster immunization with bivalent mRNA vaccines based on ancestral virus and either BA.1 or BA.4/5. Immune escape of BA.2.75, BQ, XBB and XBF variants was also evident in bivalently boosted individuals, however, cross-neutralization was improved for those with hybrid immunity. Our results indicate that future vaccine updates are needed to induce cross-neutralizing antibodies against currently circulating variants.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/prevención & control , Anticuerpos , Anticuerpos ampliamente neutralizantes , Vacunas Combinadas
8.
medRxiv ; 2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-37034641

RESUMEN

In a randomized clinical trial, we compare early neutralizing antibody responses after boosting with bivalent SARS-CoV-2 mRNA vaccines based on either BA.1 or BA.4/BA.5 Omicron spike protein combined with wildtype spike. Responses against SARS-CoV-2 variants exhibited the greatest reduction in titers against currently circulating Omicron subvariants for both bivalent vaccines.

9.
Clin Infect Dis ; 77(4): 560-564, 2023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-37036397

RESUMEN

In a randomized clinical trial, we compare early neutralizing antibody responses after boosting with bivalent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) messenger RNA (mRNA) vaccines based on either BA.1 or BA.4/BA.5 Omicron spike protein combined with wild-type spike. Responses against SARS-CoV-2 variants exhibited the greatest reduction in titers against currently circulating Omicron subvariants for both bivalent vaccines.


Asunto(s)
COVID-19 , Humanos , COVID-19/prevención & control , SARS-CoV-2/genética , Anticuerpos Neutralizantes , Vacunas Combinadas , Anticuerpos Antivirales
10.
Emerg Infect Dis ; 29(5)2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37054986

RESUMEN

Since late 2020, SARS-CoV-2 variants have regularly emerged with competitive and phenotypic differences from previously circulating strains, sometimes with the potential to escape from immunity produced by prior exposure and infection. The Early Detection group is one of the constituent groups of the US National Institutes of Health National Institute of Allergy and Infectious Diseases SARS-CoV-2 Assessment of Viral Evolution program. The group uses bioinformatic methods to monitor the emergence, spread, and potential phenotypic properties of emerging and circulating strains to identify the most relevant variants for experimental groups within the program to phenotypically characterize. Since April 2021, the group has prioritized variants monthly. Prioritization successes include rapidly identifying most major variants of SARS-CoV-2 and providing experimental groups within the National Institutes of Health program easy access to regularly updated information on the recent evolution and epidemiology of SARS-CoV-2 that can be used to guide phenotypic investigations.


Asunto(s)
COVID-19 , SARS-CoV-2 , Estados Unidos/epidemiología , Humanos , SARS-CoV-2/genética , COVID-19/epidemiología , National Institutes of Health (U.S.)
11.
J Agric Food Chem ; 71(11): 4683-4695, 2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36888893

RESUMEN

Cytochromes P450, forming a superfamily of monooxygenases containing heme as a cofactor, show great versatility in substrate specificity. Metabolic engineering can take advantage of this feature to unlock novel metabolic pathways. However, the cytochromes P450 often show difficulty being expressed in a heterologous chassis. As a case study in the prokaryotic host Escherichia coli, the heterologous synthesis of ß-cryptoxanthin was addressed. This carotenoid intermediate is difficult to produce, as its synthesis requires a monoterminal hydroxylation of ß-carotene whereas most of the classic carotene hydroxylases are dihydroxylases. This study was focused on the optimization of the in vivo activity of CYP97H1, an original P450 ß-carotene monohydroxylase. Engineering the N-terminal part of CYP97H1, identifying the matching redox partners, defining the optimal cellular background and adjusting the culture and induction conditions improved the production by 400 times compared to that of the initial strain, representing 2.7 mg/L ß-cryptoxanthin and 20% of the total carotenoids produced.


Asunto(s)
beta-Criptoxantina , beta Caroteno , beta Caroteno/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Carotenoides/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo
12.
Biomolecules ; 13(2)2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36830734

RESUMEN

Molecular biodiversity results from branched metabolic pathways driven by enzymatic regioselectivities. An additional complexity occurs in metabolites with an internal structural symmetry, offering identical extremities to the enzymes. For example, in the terpene family, ß-carotene presents two identical terminal closed-ring structures. Theses cycles can be hydroxylated by cytochrome P450s from the CYP97 family. Two sequential hydroxylations lead first to the formation of monohydroxylated ß-cryptoxanthin and subsequently to that of dihydroxylated zeaxanthin. Among the CYP97 dihydroxylases, CYP97H1 from Euglena gracilis has been described as the only monohydroxylase. This study aims to determine which enzymatic domains are involved in this regioselectivity, conferring unique monohydroxylase activity on a substrate offering two identical sites for hydroxylation. We explored the effect of truncations, substitutions and domain swapping with other CYP97 members and found that CYP97H1 harbours a unique N-terminal globular domain. This CYP97H1 N-terminal domain harbours a hydrophobic patch at the entrance of the substrate channel, which is involved in the monohydroxylase activity of CYP97H1. This domain, at the surface of the enzyme, highlights the role of distal and non-catalytic domains in regulating enzyme specificity.


Asunto(s)
Euglena gracilis , beta Caroteno , Euglena gracilis/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Especificidad por Sustrato
14.
Methods Mol Biol ; 2553: 79-94, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36227540

RESUMEN

This chapter outlines applications in genome mining, along with computational methods to predict protein structure and protein-ligand docking. It offers a simple computational route to rapidly identify proteins of interest from genomic and proteomic data, to accurately predict their three-dimensional structures, and to dock small molecules to their binding pockets and strategies to improve their biophysical properties depending on the needs of the experimental researcher.


Asunto(s)
Biología Computacional , Proteómica , Sitios de Unión , Ligandos , Unión Proteica , Ingeniería de Proteínas , Proteínas/química
15.
bioRxiv ; 2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-35860221

RESUMEN

During the SARS-CoV-2 pandemic, multiple variants escaping pre-existing immunity emerged, causing concerns about continued protection. Here, we use antigenic cartography to analyze patterns of cross-reactivity among a panel of 21 variants and 15 groups of human sera obtained following primary infection with 10 different variants or after mRNA-1273 or mRNA-1273.351 vaccination. We find antigenic differences among pre-Omicron variants caused by substitutions at spike protein positions 417, 452, 484, and 501. Quantifying changes in response breadth over time and with additional vaccine doses, our results show the largest increase between 4 weeks and >3 months post-2nd dose. We find changes in immunodominance of different spike regions depending on the variant an individual was first exposed to, with implications for variant risk assessment and vaccine strain selection.

16.
Nat Commun ; 13(1): 7701, 2022 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-36513653

RESUMEN

Several studies have shown that SARS-CoV-2 BA.1 omicron is an immune escape variant. Meanwhile, however, omicron BA.2 and BA.5 became dominant in many countries and replaced BA.1. As both have several mutations compared to BA.1, we analyzed whether BA.2 and BA.5 show further immune escape relative to BA.1. Here, we characterized neutralization profiles against the BA.2 and BA.5 omicron sub-variants in plasma samples from individuals with different history of exposures to infection/vaccination and found that unvaccinated individuals after a single exposure to BA.2 had limited cross-neutralizing antibodies to pre-omicron variants and to BA.1. Consequently, our antigenic map including all Variants of Concern and BA.1, BA.2 and BA.5 omicron sub-variants, showed that all omicron sub-variants are distinct to pre-omicron variants, but that the three omicron variants are also antigenically distinct from each other. The antibody landscapes illustrate that cross-neutralizing antibodies against the current antigenic space, as described in our maps, are generated only after three or more exposures to antigenically close variants but also after two exposures to antigenically distant variants. Here, we describe the antigenic space inhabited by the relevant SARS-CoV-2 variants, the understanding of which will have important implications for further vaccine strain adaptations.


Asunto(s)
COVID-19 , Humanos , Anticuerpos ampliamente neutralizantes , SARS-CoV-2/genética , Aclimatación , Anticuerpos Antivirales , Anticuerpos Neutralizantes
17.
Science ; 378(6620): eade2277, 2022 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-36356147

RESUMEN

Huisman et al. claim that our model is poorly supported or contradicted by other studies and the predictions are "seriously flawed." We show their criticism is based on an incomplete selection of evidence, misinterpretation of data, or does not actually refute the model. Like all ecosystem models, our model has simplifications and uncertainties, but it is better than existing approaches hat ignore biology and do not predict toxin concentration.


Asunto(s)
Toxinas Bacterianas , Lagos , Microcystis , Fósforo , Ecosistema , Lagos/química , Lagos/microbiología , Fósforo/deficiencia , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/toxicidad , Microcystis/metabolismo
18.
Proc Natl Acad Sci U S A ; 119(42): e2211616119, 2022 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-36215486

RESUMEN

Influenza B virus primarily infects humans, causing seasonal epidemics globally. Two antigenic variants-Victoria-like and Yamagata-like-were detected in the 1980s, of which the molecular basis of emergence is still incompletely understood. Here, the antigenic properties of a unique collection of historical virus isolates, sampled from 1962 to 2000 and passaged exclusively in mammalian cells to preserve antigenic properties, were determined with the hemagglutination inhibition assay and an antigenic map was built to quantify and visualize the divergence of the lineages. The antigenic map revealed only three distinct antigenic clusters-Early, Victoria, and Yamagata-with relatively little antigenic diversity in each cluster until 2000. Viruses with Victoria-like antigenic properties emerged around 1972 and diversified subsequently into two genetic lineages. Viruses with Yamagata-like antigenic properties evolved from one lineage and became clearly antigenically distinct from the Victoria-like viruses around 1988. Recombinant mutant viruses were tested to show that insertions and deletions (indels), as observed frequently in influenza B virus hemagglutinin, had little effect on antigenic properties. In contrast, amino-acid substitutions at positions 148, 149, 150, and 203, adjacent to the hemagglutinin receptor binding site, determined the main antigenic differences between the Early, Victoria-like, and Yamagata-like viruses. Surprisingly, substitutions at two of the four positions reverted in recent viruses of the Victoria lineage, resulting in antigenic properties similar to viruses circulating ∼50 y earlier. These data shed light on the antigenic diversification of influenza viruses and suggest there may be limits to the antigenic evolution of influenza B virus.


Asunto(s)
Gripe Humana , Animales , Variación Antigénica/genética , Sitios de Unión , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Hemaglutininas , Humanos , Virus de la Influenza B/genética , Mamíferos , Filogenia
20.
Appl Environ Microbiol ; 88(14): e0254421, 2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35862723

RESUMEN

In the oligotrophic oceans, key autotrophs depend on "helper" bacteria to reduce oxidative stress from hydrogen peroxide (H2O2) in the extracellular environment. H2O2 is also a ubiquitous stressor in freshwaters, but the effects of H2O2 on autotrophs and their interactions with bacteria are less well understood in freshwaters. Naturally occurring H2O2 in freshwater systems is proposed to impact the proportion of microcystin-producing (toxic) and non-microcystin-producing (nontoxic) Microcystis in blooms, which influences toxin concentrations and human health impacts. However, how different strains of Microcystis respond to naturally occurring H2O2 concentrations and the microbes responsible for H2O2 decomposition in freshwater cyanobacterial blooms are unknown. To address these knowledge gaps, we used metagenomics and metatranscriptomics to track the presence and expression of genes for H2O2 decomposition by microbes during a cyanobacterial bloom in western Lake Erie in the summer of 2014. katG encodes the key enzyme for decomposing extracellular H2O2 but was absent in most Microcystis cells. katG transcript relative abundance was dominated by heterotrophic bacteria. In axenic Microcystis cultures, an H2O2 scavenger (pyruvate) significantly improved growth rates of one toxic strain while other toxic and nontoxic strains were unaffected. These results indicate that heterotrophic bacteria play a key role in H2O2 decomposition in Microcystis blooms and suggest that their activity may affect the fitness of some Microcystis strains and thus the strain composition of Microcystis blooms but not along a toxic versus nontoxic dichotomy. IMPORTANCE Cyanobacterial harmful algal blooms (CHABs) threaten freshwater ecosystems globally through the production of toxins. Toxin production by cyanobacterial species and strains during CHABs varies widely over time and space, but the ecological drivers of the succession of toxin-producing species remain unclear. Hydrogen peroxide (H2O2) is ubiquitous in natural waters, inhibits microbial growth, and may determine the relative proportions of Microcystis strains during blooms. However, the mechanisms and organismal interactions involved in H2O2 decomposition are unexplored in CHABs. This study shows that some strains of bloom-forming freshwater cyanobacteria benefit from detoxification of H2O2 by associated heterotrophic bacteria, which may impact bloom development.


Asunto(s)
Cianobacterias , Microcystis , Catalasa/metabolismo , Cianobacterias/genética , Ecosistema , Floraciones de Algas Nocivas , Humanos , Peróxido de Hidrógeno/metabolismo , Lagos/microbiología , Microcistinas/metabolismo , Microcystis/genética , Microcystis/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...