Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Neurosurg ; : 1-9, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38788232

RESUMEN

OBJECTIVE: Interictal epileptiform discharges (IEDs) are intermittent high-amplitude electrical signals that occur between seizures. They have been shown to propagate through the brain as traveling waves when recorded with epicortical grid-type electrodes and small penetrating microelectrode arrays. However, little work has been done to translate experimental IED analyses to more clinically relevant platforms such as stereoelectroencephalography (SEEG). In this pilot study, the authors aimed to define a computational method to identify and characterize IEDs recorded from clinical SEEG electrodes and leverage the directionality of IED traveling waves to localize the seizure onset zone (SOZ). METHODS: Continuous SEEG recordings from 15 patients with medically refractory epilepsy were collected, and IEDs were detected by identifying overlapping peaks of a minimum prominence. IED pathways of propagation were defined and compared to the SOZ location determined by a clinical neurologist based on the ictal recordings. For further analysis of the IED pathways of propagation, IED detections were divided into triplets, defined as a set of 3 consecutive contacts within the same IED detection. Univariate and multivariate linear regression models were employed to associate IED characteristics with colocalization to the SOZ. RESULTS: A median (range) of 22.6 (4.4-183.9) IEDs were detected per hour from 15 patients over a mean of 23.2 hours of recording. Depending on the definition of the SOZ, a median (range) of 20.8% (0.0%-54.5%) to 62.1% (19.2%-99.4%) of IEDs per patient traversed the SOZ. IEDs passing through the SOZ followed discrete pathways that had little overlap with those of the IEDs passing outside the SOZ. Contact triplets that occurred more than once were significantly more likely to be detected in an IED passing through the SOZ (p < 0.001). Per our multivariate model, patients with a greater proportion of IED traveling waves had a significantly greater proportion of IEDs that localized to the SOZ (ß = 0.64, 95% CI 0.01-1.27, p = 0.045). CONCLUSIONS: By using computational methods, IEDs can be meaningfully detected from clinical-grade SEEG recordings of patients with epilepsy. In some patients, a high proportion of IEDs are traveling waves according to multiple metrics that colocalize to the SOZ, offering hope that IED detection, with further refinement, could serve as an alternative method for SOZ localization.

2.
bioRxiv ; 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38645037

RESUMEN

Impulsive choices prioritize smaller, more immediate rewards over larger, delayed, or potentially uncertain rewards. Impulsive choices are a critical aspect of substance use disorders and maladaptive decision-making across the lifespan. Here, we sought to understand the neuronal underpinnings of expected reward and risk estimation on a trial-by-trial basis during impulsive choices. To do so, we acquired electrical recordings from the human brain while participants carried out a risky decision-making task designed to measure choice impulsivity. Behaviorally, we found a reward-accuracy tradeoff, whereby more impulsive choosers were more accurate at the task, opting for a more immediate reward while compromising overall task performance. We then examined how neuronal populations across frontal, temporal, and limbic brain regions parametrically encoded reinforcement learning model variables, namely reward and risk expectation and surprise, across trials. We found more widespread representations of reward value expectation and prediction error in more impulsive choosers, whereas less impulsive choosers preferentially represented risk expectation. A regional analysis of reward and risk encoding highlighted the anterior cingulate cortex for value expectation, the anterior insula for risk expectation and surprise, and distinct regional encoding between impulsivity groups. Beyond describing trial-by-trial population neuronal representations of reward and risk variables, these results suggest impaired inhibitory control and model-free learning underpinnings of impulsive choice. These findings shed light on neural processes underlying reinforced learning and decision-making in uncertain environments and how these processes may function in psychiatric disorders.

3.
Epilepsia ; 65(5): 1360-1373, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38517356

RESUMEN

OBJECTIVES: Responsive neurostimulation (RNS) is an established therapy for drug-resistant epilepsy that delivers direct electrical brain stimulation in response to detected epileptiform activity. However, despite an overall reduction in seizure frequency, clinical outcomes are variable, and few patients become seizure-free. The aim of this retrospective study was to evaluate aperiodic electrophysiological activity, associated with excitation/inhibition balance, as a novel electrographic biomarker of seizure reduction to aid early prognostication of the clinical response to RNS. METHODS: We identified patients with intractable mesial temporal lobe epilepsy who were implanted with the RNS System between 2015 and 2021 at the University of Utah. We parameterized the neural power spectra from intracranial RNS System recordings during the first 3 months following implantation into aperiodic and periodic components. We then correlated circadian changes in aperiodic and periodic parameters of baseline neural recordings with seizure reduction at the most recent follow-up. RESULTS: Seizure reduction was correlated significantly with a patient's average change in the day/night aperiodic exponent (r = .50, p = .016, n = 23 patients) and oscillatory alpha power (r = .45, p = .042, n = 23 patients) across patients for baseline neural recordings. The aperiodic exponent reached its maximum during nighttime hours (12 a.m. to 6 a.m.) for most responders (i.e., patients with at least a 50% reduction in seizures). SIGNIFICANCE: These findings suggest that circadian modulation of baseline broadband activity is a biomarker of response to RNS early during therapy. This marker has the potential to identify patients who are likely to respond to mesial temporal RNS. Furthermore, we propose that less day/night modulation of the aperiodic exponent may be related to dysfunction in excitation/inhibition balance and its interconnected role in epilepsy, sleep, and memory.


Asunto(s)
Ritmo Circadiano , Epilepsia Refractaria , Epilepsia del Lóbulo Temporal , Humanos , Epilepsia del Lóbulo Temporal/terapia , Epilepsia del Lóbulo Temporal/fisiopatología , Masculino , Femenino , Adulto , Ritmo Circadiano/fisiología , Estudios Retrospectivos , Persona de Mediana Edad , Epilepsia Refractaria/terapia , Epilepsia Refractaria/fisiopatología , Convulsiones/fisiopatología , Convulsiones/terapia , Estimulación Encefálica Profunda/métodos , Resultado del Tratamiento , Adulto Joven , Electroencefalografía/métodos
4.
medRxiv ; 2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38343792

RESUMEN

There is active debate regarding how GABAergic function changes during seizure initiation and propagation, and whether interneuronal activity drives or impedes the pathophysiology. Here, we track cell-type specific firing during spontaneous human seizures to identify neocortical mechanisms of inhibitory failure. Fast-spiking interneuron activity was maximal over 1 second before equivalent excitatory increases, and showed transitions to out-of-phase firing prior to local tissue becoming incorporated into the seizure-driving territory. Using computational modeling, we linked this observation to transient saturation block as a precursor to seizure invasion, as supported by multiple lines of evidence in the patient data. We propose that transient blocking of inhibitory firing due to selective fast-spiking interneuron saturation-resulting from intense excitatory synaptic drive-is a novel mechanism that contributes to inhibitory failure, allowing seizure propagation.

5.
Brain ; 147(2): 521-531, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-37796038

RESUMEN

In patients with drug-resistant epilepsy, electrical stimulation of the brain in response to epileptiform activity can make seizures less frequent and debilitating. This therapy, known as closed-loop responsive neurostimulation (RNS), aims to directly halt seizure activity via targeted stimulation of a burgeoning seizure. Rather than immediately stopping seizures as they start, many RNS implants produce slower, long-lasting changes in brain dynamics that better predict clinical outcomes. Here we hypothesize that stimulation during brain states with less epileptiform activity drives long-term changes that restore healthy brain networks. To test this, we quantified stimulation episodes during low- and high-risk brain states-that is, stimulation during periods with a lower or higher risk of generating epileptiform activity-in a cohort of 40 patients treated with RNS. More frequent stimulation in tonic low-risk states and out of rhythmic high-risk states predicted seizure reduction. Additionally, stimulation events were more likely to be phase-locked to prolonged episodes of abnormal activity for intermediate and poor responders when compared to super-responders, consistent with the hypothesis that improved outcomes are driven by stimulation during low-risk states. These results support the hypothesis that stimulation during low-risk periods might underlie the mechanisms of RNS, suggesting a relationship between temporal patterns of neuromodulation and plasticity that facilitates long-term seizure reduction.


Asunto(s)
Estimulación Encefálica Profunda , Epilepsia Refractaria , Epilepsia , Humanos , Estimulación Encefálica Profunda/métodos , Epilepsia/terapia , Convulsiones/terapia , Encéfalo , Epilepsia Refractaria/terapia
6.
iScience ; 26(11): 108047, 2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-37867949

RESUMEN

The ability to perform motor actions depends, in part, on the brain's initial state. We hypothesized that initial state dependence is a more general principle and applies to cognitive control. To test this idea, we examined human single units recorded from the dorsolateral prefrontal (dlPFC) cortex and dorsal anterior cingulate cortex (dACC) during a task that interleaves motor and perceptual conflict trials, the multisource interference task (MSIT). In both brain regions, variability in pre-trial firing rates predicted subsequent reaction time (RT) on conflict trials. In dlPFC, ensemble firing rate patterns suggested the existence of domain-specific initial states, while in dACC, firing patterns were more consistent with a domain-general initial state. The deployment of shared and independent factors that we observe for conflict resolution may allow for flexible and fast responses mediated by cognitive initial states. These results also support hypotheses that place dACC hierarchically earlier than dlPFC in proactive control.

7.
PLoS One ; 18(10): e0292808, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37844101

RESUMEN

Pain is a complex experience involving sensory, emotional, and cognitive aspects, and multiple networks manage its processing in the brain. Examining how pain transforms into a behavioral response can shed light on the networks' relationships and facilitate interventions to treat chronic pain. However, studies using high spatial and temporal resolution methods to investigate the neural encoding of pain and its psychophysical correlates have been limited. We recorded from intracranial stereo-EEG (sEEG) electrodes implanted in sixteen different brain regions of twenty patients who underwent psychophysical pain testing consisting of a tonic thermal stimulus to the hand. Broadband high-frequency local field potential amplitude (HFA; 70-150 Hz) was isolated to investigate the relationship between the ongoing neural activity and the resulting psychophysical pain evaluations. Two different generalized linear mixed-effects models (GLME) were employed to assess the neural representations underlying binary and graded pain psychophysics. The first model examined the relationship between HFA and whether the patient responded "yes" or "no" to whether the trial was painful. The second model investigated the relationship between HFA and how painful the stimulus was rated on a visual analog scale. GLMEs revealed that HFA in the inferior temporal gyrus (ITG), superior frontal gyrus (SFG), and superior temporal gyrus (STG) predicted painful responses at stimulus onset. An increase in HFA in the orbitofrontal cortex (OFC), SFG, and striatum predicted pain responses at stimulus offset. Numerous regions, including the anterior cingulate cortex, hippocampus, IFG, MTG, OFC, and striatum, predicted the pain rating at stimulus onset. However, only the amygdala and fusiform gyrus predicted increased pain ratings at stimulus offset. We characterized the spatiotemporal representations of binary and graded painful responses during tonic pain stimuli. Our study provides evidence from intracranial recordings that the neural encoding of psychophysical pain changes over time during a tonic thermal stimulus, with different brain regions being predictive of pain at the beginning and end of the stimulus.


Asunto(s)
Encéfalo , Dolor , Humanos , Encéfalo/fisiología , Sistema Nervioso , Giro del Cíngulo , Corteza Prefrontal , Imagen por Resonancia Magnética/métodos , Mapeo Encefálico
8.
Brain ; 146(12): 5209-5223, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37536281

RESUMEN

The relationship between clinically accessible epileptic biomarkers and neuronal activity underlying the transition to seizure is complex, potentially leading to imprecise delineation of epileptogenic brain areas. In particular, the pattern of interneuronal firing at seizure onset remains under debate, with some studies demonstrating increased firing and others suggesting reductions. Previous study of neocortical sites suggests that seizure recruitment occurs upon failure of inhibition, with intact feedforward inhibition in non-recruited territories. We investigated whether the same principle applies in limbic structures. We analysed simultaneous electrocorticography (ECoG) and neuronal recordings of 34 seizures in a cohort of 19 patients (10 male, 9 female) undergoing surgical evaluation for pharmacoresistant focal epilepsy. A clustering approach with five quantitative metrics computed from ECoG and multiunit data was used to distinguish three types of site-specific activity patterns during seizures, which at times co-existed within seizures. Overall, 156 single units were isolated, subclassified by cell-type and tracked through the seizure using our previously published methods to account for impacts of increased noise and single-unit waveshape changes caused by seizures. One cluster was closely associated with clinically defined seizure onset or spread. Entrainment of high-gamma activity to low-frequency ictal rhythms was the only metric that reliably identified this cluster at the level of individual seizures (P < 0.001). A second cluster demonstrated multi-unit characteristics resembling those in the first cluster, without concomitant high-gamma entrainment, suggesting feedforward effects from the seizure. The last cluster captured regions apparently unaffected by the ongoing seizure. Across all territories, the majority of both excitatory and inhibitory neurons reduced (69.2%) or ceased firing (21.8%). Transient increases in interneuronal firing rates were rare (13.5%) but showed evidence of intact feedforward inhibition, with maximal firing rate increases and waveshape deformations in territories not fully recruited but showing feedforward activity from the seizure, and a shift to burst-firing in seizure-recruited territories (P = 0.014). This study provides evidence for entrained high-gamma activity as an accurate biomarker of ictal recruitment in limbic structures. However, reduced neuronal firing suggested preserved inhibition in mesial temporal structures despite simultaneous indicators of seizure recruitment, in contrast to the inhibitory collapse scenario documented in neocortex. Further study is needed to determine if this activity is ubiquitous to hippocampal seizures or indicates a 'seizure-responsive' state in which the hippocampus is not the primary driver. If the latter, distinguishing such cases may help to refine the surgical treatment of mesial temporal lobe epilepsy.


Asunto(s)
Epilepsia del Lóbulo Temporal , Neocórtex , Humanos , Masculino , Femenino , Electroencefalografía/métodos , Convulsiones , Epilepsia del Lóbulo Temporal/cirugía , Neuronas/fisiología
9.
bioRxiv ; 2023 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-37034691

RESUMEN

Emerging evidence suggests that the temporal dynamics of cortico-cortical evoked potentials (CCEPs) may be used to characterize the patterns of information flow between and within brain networks. At present, however, the spatiotemporal dynamics of CCEP propagation cortically and subcortically are incompletely understood. We hypothesized that CCEPs propagate as an evoked traveling wave emanating from the site of stimulation. To elicit CCEPs, we applied single-pulse stimulation to stereoelectroencephalography (SEEG) electrodes implanted in 21 adult patients with intractable epilepsy. For each robust CCEP, we measured the timing of the maximal descent in evoked local field potentials and broadband high-gamma power (70-150 Hz) envelopes relative to the distance between the recording and stimulation contacts using three different metrics (i.e., Euclidean distance, path length, geodesic distance), representing direct, subcortical, and transcortical propagation, respectively. Many evoked responses to single-pulse electrical stimulation appear to propagate as traveling waves (~17-30%), even in the sparsely sampled, three-dimensional SEEG space. These results provide new insights into the spatiotemporal dynamics of CCEP propagation.

10.
medRxiv ; 2023 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-36993429

RESUMEN

Background: The anterior cingulate cortex (ACC) plays an important role in the cognitive and emotional processing of pain. Prior studies have used deep brain stimulation (DBS) to treat chronic pain, but results have been inconsistent. This may be due to network adaptation over time and variable causes of chronic pain. Identifying patient-specific pain network features may be necessary to determine patient candidacy for DBS. Hypothesis: Cingulate stimulation would increase patients' hot pain thresholds if non-stimulation 70-150 Hz activity encoded psychophysical pain responses. Methods: In this study, four patients who underwent intracranial monitoring for epilepsy monitoring participated in a pain task. They placed their hand on a device capable of eliciting thermal pain for five seconds and rated their pain. We used these results to determine the individual's thermal pain threshold with and without electrical stimulation. Two different types of generalized linear mixed-effects models (GLME) were employed to assess the neural representations underlying binary and graded pain psychophysics. Results: The pain threshold for each patient was determined from the psychometric probability density function. Two patients had a higher pain threshold with stimulation than without, while the other two patients had no difference. We also evaluated the relationship between neural activity and pain responses. We found that patients who responded to stimulation had specific time windows where high-frequency activity was associated with increased pain ratings. Conclusion: Stimulation of cingulate regions with increased pain-related neural activity was more effective at modulating pain perception than stimulating non-responsive areas. Personalized evaluation of neural activity biomarkers could help identify the best target for stimulation and predict its effectiveness in future studies evaluating DBS.

11.
bioRxiv ; 2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36945412

RESUMEN

Pain is a complex experience involving sensory, emotional, and cognitive aspects, and multiple networks manage its processing in the brain. Examining how pain transforms into a behavioral response can shed light on the networks' relationships and facilitate interventions to treat chronic pain. However, studies using high spatial and temporal resolution methods to investigate the neural encoding of pain and its psychophysical correlates have been limited. We recorded from intracranial stereo-EEG (sEEG) electrodes implanted in sixteen different brain regions of twenty patients who underwent psychophysical pain testing consisting of a tonic thermal stimulus to the hand. Broadband high-frequency local field potential amplitude (HFA; 70-150 Hz) was isolated to investigate the relationship between the ongoing neural activity and the resulting psychophysical pain evaluations. Two different generalized linear mixed-effects models (GLME) were employed to assess the neural representations underlying binary and graded pain psychophysics. The first model examined the relationship between HFA and whether the patient responded "yes" or "no" to whether the trial was painful. The second model investigated the relationship between HFA and how painful the stimulus was rated on a visual analog scale. GLMEs revealed that HFA in the inferior temporal gyrus (ITG), superior frontal gyrus (SFG), and superior temporal gyrus (STG) predicted painful responses at stimulus onset. An increase in HFA in the orbitofrontal cortex (OFC), SFG, and striatum predicted pain responses at stimulus offset. Numerous regions including the anterior cingulate cortex, hippocampus, IFG, MTG, OFC, and striatum, predicted the pain rating at stimulus onset. However, only the amygdala and fusiform gyrus predicted increased pain ratings at stimulus offset. We characterized the spatiotemporal representations of binary and graded painful responses during tonic pain stimuli. Our study provides evidence from intracranial recordings that the neural encoding of psychophysical pain changes over time during a tonic thermal stimulus, with different brain regions being predictive of pain at the beginning and end of the stimulus.

12.
J Neurosci Methods ; 386: 109780, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36586439

RESUMEN

INTRODUCTION: Cerebral projections of nociceptive stimuli are of great interest as targets for neuromodulation in chronic pain. To study cerebral networks involved in processing noxious stimuli, researchers often rely on thermo-nociception to induce pain. However, various limitations exist in many pain-inducing techniques, such as not accounting for individual variations in pain and trial structure predictability. METHODS: We propose an improved and reliable psychometric experimental method to evaluate human nociceptive processing to overcome some of these limitations. The developed testing paradigm leverages a custom-built, open-source, thermoelectric device (TED). The device construction and hardware are described. A maximum-likelihood adaptive algorithm is integrated into the TED software, facilitating individual psychometric functions representative of both hot and cold pain perception. In addition to testing only hot or cold thresholds, the TED may also be used to induce the thermal grill illusion (TGI), where the bars are set to alternating warm and cool temperatures. RESULTS: Here, we validated the TED's capability to adjust between different temperatures and showed that the device quickly and automatically changes temperature without any experimenter input. We also validated the device and integrated psychometric pain task in 21 healthy human subjects. Hot and cold pain thresholds (HPT, CPT) were determined in human subjects with <1 °C of variation. Thresholds were anticorrelated, meaning a volunteer with a low CPT likely had a high HPT. We also showed how the TED can be used to induce the TGI. CONCLUSION: The TED can induce thermo-nociception and provide probabilistic measures of hot and cold pain thresholds. Based on the findings presented, we discuss how the TED could be used to study thermo-nociceptive cerebral projections if paired with intracranial electrode monitoring.


Asunto(s)
Nocicepción , Sensación Térmica , Humanos , Dolor Crónico , Frío , Voluntarios Sanos , Calor , Umbral del Dolor , Nocicepción/fisiología
13.
J Neurosci ; 42(32): 6285-6294, 2022 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-35790403

RESUMEN

Neuronal coherence is thought to be a fundamental mechanism of communication in the brain, where synchronized field potentials coordinate synaptic and spiking events to support plasticity and learning. Although the spread of field potentials has garnered great interest, little is known about the spatial reach of phase synchronization, or neuronal coherence. Functional connectivity between different brain regions is known to occur across long distances, but the locality of synchronization across the neocortex is understudied. Here we used simultaneous recordings from electrocorticography (ECoG) grids and high-density microelectrode arrays to estimate the spatial reach of neuronal coherence and spike-field coherence (SFC) across frontal, temporal, and occipital cortices during cognitive tasks in humans. We observed the strongest coherence within a 2-3 cm distance from the microelectrode arrays, potentially defining an effective range for local communication. This range was relatively consistent across brain regions, spectral frequencies, and cognitive tasks. The magnitude of coherence showed power law decay with increasing distance from the microelectrode arrays, where the highest coherence occurred between ECoG contacts, followed by coherence between ECoG and deep cortical local field potential (LFP), and then SFC (i.e., ECoG > LFP > SFC). The spectral frequency of coherence also affected its magnitude. Alpha coherence (8-14 Hz) was generally higher than other frequencies for signals nearest the microelectrode arrays, whereas delta coherence (1-3 Hz) was higher for signals that were farther away. Action potentials in all brain regions were most coherent with the phase of alpha oscillations, which suggests that alpha waves could play a larger, more spatially local role in spike timing than other frequencies. These findings provide a deeper understanding of the spatial and spectral dynamics of neuronal synchronization, further advancing knowledge about how activity propagates across the human brain.SIGNIFICANCE STATEMENT Coherence is theorized to facilitate information transfer across cerebral space by providing a convenient electrophysiological mechanism to modulate membrane potentials in spatiotemporally complex patterns. Our work uses a multiscale approach to evaluate the spatial reach of phase coherence and spike-field coherence during cognitive tasks in humans. Locally, coherence can reach up to 3 cm around a given area of neocortex. The spectral properties of coherence revealed that alpha phase-field and spike-field coherence were higher within ranges <2 cm, whereas lower-frequency delta coherence was higher for contacts farther away. Spatiotemporally shared information (i.e., coherence) across neocortex seems to reach farther than field potentials alone.


Asunto(s)
Neocórtex , Potenciales de Acción/fisiología , Electrocorticografía , Humanos , Microelectrodos , Neuronas/fisiología
15.
Elife ; 112022 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-35050851

RESUMEN

Interictal epileptiform discharges (IEDs), also known as interictal spikes, are large intermittent electrophysiological events observed between seizures in patients with epilepsy. Although they occur far more often than seizures, IEDs are less studied, and their relationship to seizures remains unclear. To better understand this relationship, we examined multi-day recordings of microelectrode arrays implanted in human epilepsy patients, allowing us to precisely observe the spatiotemporal propagation of IEDs, spontaneous seizures, and how they relate. These recordings showed that the majority of IEDs are traveling waves, traversing the same path as ictal discharges during seizures, and with a fixed direction relative to seizure propagation. Moreover, the majority of IEDs, like ictal discharges, were bidirectional, with one predominant and a second, less frequent antipodal direction. These results reveal a fundamental spatiotemporal similarity between IEDs and ictal discharges. These results also imply that most IEDs arise in brain tissue outside the site of seizure onset and propagate toward it, indicating that the propagation of IEDs provides useful information for localizing the seizure focus.


Asunto(s)
Mapeo Encefálico/métodos , Electroencefalografía/métodos , Epilepsia/fisiopatología , Convulsiones/fisiopatología , Adulto , Femenino , Humanos , Masculino , Adulto Joven
16.
Psychophysiology ; 59(5): e13901, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34287923

RESUMEN

Intracranial recordings in human subjects provide a unique, fine-grained temporal and spatial resolution inaccessible to conventional non-invasive methods. A prominent signal in these recordings is broadband high-frequency activity (approx. 70-150 Hz), generally considered to reflect neuronal excitation. Here we explored the use of this broadband signal to track, on a single-trial basis, the temporal and spatial distribution of task-engaged areas involved in decision-making. We additionally focused on the alpha rhythm (8-14 Hz), thought to regulate the (dis)engagement of neuronal populations based on task demands. Using these signals, we characterized activity across cortex using intracranial recordings in patients with intractable epilepsy performing the Multi-Source Interference Task, a Stroop-like decision-making paradigm. We analyzed recordings both from grid electrodes placed over cortical areas including frontotemporal and parietal cortex, and depth electrodes in prefrontal regions, including cingulate cortex. We found a widespread negative relationship between alpha power and broadband activity, substantiating the gating role of alpha in regions beyond sensory/motor cortex. Combined, these signals reflect the spatio-temporal pattern of task-engagement, with alpha decrease signifying task-involved regions and broadband increase temporally locking to specific task aspects, distributed over cortical sites. We report sites that only respond to stimulus presentation or to the decision report and, interestingly, sites that reflect the time-on-task. The latter predict the subject's reaction times on a trial-by-trial basis. A smaller subset of sites showed modulation with task condition. Taken together, alpha and broadband signals allow tracking of neuronal population dynamics across cortex on a fine temporal and spatial scale.


Asunto(s)
Ritmo alfa , Lóbulo Parietal , Ritmo alfa/fisiología , Mapeo Encefálico/métodos , Giro del Cíngulo , Humanos , Tiempo de Reacción/fisiología
17.
Front Neurosci ; 15: 769872, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34955721

RESUMEN

Accurate anatomical localization of intracranial electrodes is important for identifying the seizure foci in patients with epilepsy and for interpreting effects from cognitive studies employing intracranial electroencephalography. Localization is typically performed by coregistering postimplant computed tomography (CT) with preoperative magnetic resonance imaging (MRI). Electrodes are then detected in the CT, and the corresponding brain region is identified using the MRI. Many existing software packages for electrode localization chain together separate preexisting programs or rely on command line instructions to perform the various localization steps, making them difficult to install and operate for a typical user. Further, many packages provide solutions for some, but not all, of the steps needed for confident localization. We have developed software, Locate electrodes Graphical User Interface (LeGUI), that consists of a single interface to perform all steps needed to localize both surface and depth/penetrating intracranial electrodes, including coregistration of the CT to MRI, normalization of the MRI to the Montreal Neurological Institute template, automated electrode detection for multiple types of electrodes, electrode spacing correction and projection to the brain surface, electrode labeling, and anatomical targeting. The software is written in MATLAB, core image processing is performed using the Statistical Parametric Mapping toolbox, and standalone executable binaries are available for Windows, Mac, and Linux platforms. LeGUI was tested and validated on 51 datasets from two universities. The total user and computational time required to process a single dataset was approximately 1 h. Automatic electrode detection correctly identified 4362 of 4695 surface and depth electrodes with only 71 false positives. Anatomical targeting was verified by comparing electrode locations from LeGUI to locations that were assigned by an experienced neuroanatomist. LeGUI showed a 94% match with the 482 neuroanatomist-assigned locations. LeGUI combines all the features needed for fast and accurate anatomical localization of intracranial electrodes into a single interface, making it a valuable tool for intracranial electrophysiology research.

18.
Sci Rep ; 11(1): 24155, 2021 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-34921176

RESUMEN

In this study, we quantified the coverage of gray and white matter during intracranial electroencephalography in a cohort of epilepsy patients with surface and depth electrodes. We included 65 patients with strip electrodes (n = 12), strip and grid electrodes (n = 24), strip, grid, and depth electrodes (n = 7), or depth electrodes only (n = 22). Patient-specific imaging was used to generate probabilistic gray and white matter maps and atlas segmentations. Gray and white matter coverage was quantified using spherical volumes centered on electrode centroids, with radii ranging from 1 to 15 mm, along with detailed finite element models of local electric fields. Gray matter coverage was highly dependent on the chosen radius of influence (RoI). Using a 2.5 mm RoI, depth electrodes covered more gray matter than surface electrodes; however, surface electrodes covered more gray matter at RoI larger than 4 mm. White matter coverage and amygdala and hippocampal coverage was greatest for depth electrodes at all RoIs. This study provides the first probabilistic analysis to quantify coverage for different intracranial recording configurations. Depth electrodes offer increased coverage of gray matter over other recording strategies if the desired signals are local, while subdural grids and strips sample more gray matter if the desired signals are diffuse.


Asunto(s)
Electrocorticografía , Epilepsia , Sustancia Gris , Hipocampo , Imagen por Resonancia Magnética , Sustancia Blanca , Adulto , Epilepsia/diagnóstico por imagen , Epilepsia/fisiopatología , Femenino , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/fisiopatología , Hipocampo/diagnóstico por imagen , Hipocampo/fisiopatología , Humanos , Masculino , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/fisiopatología
19.
J Neurosci ; 41(4): 766-779, 2021 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-33229500

RESUMEN

Analyzing neuronal activity during human seizures is pivotal to understanding mechanisms of seizure onset and propagation. These analyses, however, invariably using extracellular recordings, are greatly hindered by various phenomena that are well established in animal studies: changes in local ionic concentration, changes in ionic conductance, and intense, hypersynchronous firing. The first two alter the action potential waveform, whereas the third increases the "noise"; all three factors confound attempts to detect and classify single neurons. To address these analytical difficulties, we developed a novel template-matching-based spike sorting method, which enabled identification of 1239 single neurons in 27 patients (13 female) with intractable focal epilepsy, that were tracked throughout multiple seizures. These new analyses showed continued neuronal firing with widespread intense activation and stereotyped action potential alterations in tissue that was invaded by the seizure: neurons displayed increased waveform duration (p < 0.001) and reduced amplitude (p < 0.001), consistent with prior animal studies. By contrast, neurons in "penumbral" regions (those receiving intense local synaptic drive from the seizure but without neuronal evidence of local seizure invasion) showed stable waveforms. All neurons returned to their preictal waveforms after seizure termination. We conclude that the distinction between "core" territories invaded by the seizure versus "penumbral" territories is evident at the level of single neurons. Furthermore, the increased waveform duration and decreased waveform amplitude are neuron-intrinsic hallmarks of seizure invasion that impede traditional spike sorting and could be used as defining characteristics of local recruitment.SIGNIFICANCE STATEMENT Animal studies consistently show marked changes in action potential waveform during epileptic discharges, but acquiring similar evidence in humans has proven difficult. Assessing neuronal involvement in ictal events is pivotal to understanding seizure dynamics and in defining clinical localization of epileptic pathology. Using a novel method to track neuronal firing, we analyzed microelectrode array recordings of spontaneously occurring human seizures, and here report two dichotomous activity patterns. In cortex that is recruited to the seizure, neuronal firing rates increase and waveforms become longer in duration and shorter in amplitude as the neurons are recruited to the seizure, while penumbral tissue shows stable action potentials, in keeping with the "dual territory" model of seizure dynamics.


Asunto(s)
Electroencefalografía , Neuronas , Convulsiones/fisiopatología , Potenciales de Acción , Adulto , Ondas Encefálicas , Corteza Cerebral/fisiopatología , Epilepsia Refractaria/fisiopatología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Reclutamiento Neurofisiológico , Análisis de Ondículas , Adulto Joven
20.
Sci Rep ; 10(1): 19166, 2020 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-33154490

RESUMEN

High frequency oscillations (HFOs) are bursts of neural activity in the range of 80 Hz or higher, recorded from intracranial electrodes during epileptiform discharges. HFOs are a proposed biomarker of epileptic brain tissue and may also be useful for seizure forecasting. Despite such clinical utility of HFOs, the spatial context and neuronal activity underlying these local field potential (LFP) events remains unclear. We sought to further understand the neuronal correlates of ictal high frequency LFPs using multielectrode array recordings in the human neocortex and mesial temporal lobe during rhythmic onset seizures. These multiscale recordings capture single cell, multiunit, and LFP activity from the human brain. We compare features of multiunit firing and high frequency LFP from microelectrodes and macroelectrodes during ictal discharges in both the seizure core and penumbra (spatial seizure domains defined by multiunit activity patterns). We report differences in spectral features, unit-local field potential coupling, and information theoretic characteristics of high frequency LFP before and after local seizure invasion. Furthermore, we tie these time-domain differences to spatial domains of seizures, showing that penumbral discharges are more broadly distributed and less useful for seizure localization. These results describe the neuronal and synaptic correlates of two types of pathological HFOs in humans and have important implications for clinical interpretation of rhythmic onset seizures.


Asunto(s)
Potenciales de Acción/fisiología , Encéfalo/fisiopatología , Epilepsia Refractaria/fisiopatología , Neuronas/fisiología , Convulsiones/fisiopatología , Electroencefalografía , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...