Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 3515, 2023 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-37316488

RESUMEN

Parvoviruses (family Parvoviridae) are currently defined by a linear monopartite ssDNA genome, T = 1 icosahedral capsids, and distinct structural (VP) and non-structural (NS) protein expression cassettes within their genome. We report the discovery of a parvovirus with a bipartite genome, Acheta domesticus segmented densovirus (AdSDV), isolated from house crickets (Acheta domesticus), in which it is pathogenic. We found that the AdSDV harbors its NS and VP cassettes on two separate genome segments. Its vp segment acquired a phospholipase A2-encoding gene, vpORF3, via inter-subfamily recombination, coding for a non-structural protein. We showed that the AdSDV evolved a highly complex transcription profile in response to its multipartite replication strategy compared to its monopartite ancestors. Our structural and molecular examinations revealed that the AdSDV packages one genome segment per particle. The cryo-EM structures of two empty- and one full-capsid population (3.3, 3.1 and 2.3 Å resolution) reveal a genome packaging mechanism, which involves an elongated C-terminal tail of the VP, "pinning" the ssDNA genome to the capsid interior at the twofold symmetry axis. This mechanism fundamentally differs from the capsid-DNA interactions previously seen in parvoviruses. This study provides new insights on the mechanism behind ssDNA genome segmentation and on the plasticity of parvovirus biology.


Asunto(s)
Densovirus , Gryllidae , Infecciones por Parvoviridae , Parvovirus , Animales , Densovirus/genética , Morfogénesis , Proteínas de la Cápside/genética , ADN de Cadena Simple/genética , Parvovirus/genética
2.
Commun Biol ; 6(1): 276, 2023 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-36928388

RESUMEN

Attachment between cells is crucial for almost all aspects of the life of cells. These inter-cell adhesions are mediated by the binding of transmembrane cadherin receptors of one cell to cadherins of a neighboring cell. Inside the cell, cadherin binds ß-catenin, which interacts with α-catenin. The transitioning of cells between migration and adhesion is modulated by α-catenin, which links cell junctions and the plasma membrane to the actin cytoskeleton. At cell junctions, a single ß-catenin/α-catenin heterodimer slips along filamentous actin in the direction of cytoskeletal tension which unfolds clustered heterodimers to form catch bonds with F-actin. Outside cell junctions, α-catenin dimerizes and links the plasma membrane to F-actin. Under cytoskeletal tension, α-catenin unfolds and forms an asymmetric catch bond with F-actin. To understand the mechanism of this important α-catenin function, we determined the 2.7 Å cryogenic electron microscopy (cryoEM) structures of filamentous actin alone and bound to human dimeric α-catenin. Our structures provide mechanistic insights into the role of the α-catenin interdomain interactions in directing α-catenin function and suggest a bivalent mechanism. Further, our cryoEM structure of human monomeric α-catenin provides mechanistic insights into α-catenin autoinhibition. Collectively, our structures capture the initial α-catenin interaction with F-actin before the sensing of force, which is a crucial event in cell adhesion and human disease.


Asunto(s)
Citoesqueleto de Actina , Uniones Intercelulares , alfa Catenina , Humanos , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , alfa Catenina/química , alfa Catenina/metabolismo , beta Catenina/metabolismo , Cadherinas/metabolismo , Uniones Intercelulares/metabolismo
3.
J Biol Chem ; 299(2): 102817, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36539037

RESUMEN

The regulation of cell-cell junctions during epidermal morphogenesis ensures tissue integrity, a process regulated by α-catenin. This cytoskeletal protein connects the cadherin complex to filamentous actin at cell-cell junctions. The cadherin-catenin complex plays key roles in cell physiology, organism development, and disease. While mutagenesis of Caenorhabditis elegans cadherin and catenin shows that these proteins are key for embryonic morphogenesis, we know surprisingly little about their structure and attachment to the cytoskeleton. In contrast to mammalian α-catenin that functions as a dimer or monomer, the α-catenin ortholog from C. elegans, HMP1 for humpback, is a monomer. Our cryogenic electron microscopy (cryoEM) structure of HMP1/α-catenin reveals that the amino- and carboxy-terminal domains of HMP1/α-catenin are disordered and not in contact with the remaining HMP1/α-catenin middle domain. Since the carboxy-terminal HMP1/α-catenin domain is the F-actin-binding domain (FABD), this interdomain constellation suggests that HMP1/α-catenin is constitutively active, which we confirm biochemically. Our perhaps most surprising finding, given the high sequence similarity between the mammalian and nematode proteins, is our cryoEM structure of HMP1/α-catenin bound to F-actin. Unlike the structure of mammalian α-catenin bound to F-actin, binding to F-actin seems to allosterically convert a loop region of the HMP1/α-catenin FABD to extend an HMP1/α-catenin FABD α-helix. We use cryoEM and bundling assays to show for the first time how the FABD of HMP1/α-catenin bundles actin in the absence of force. Collectively, our data advance our understanding of α-catenin regulation of cell-cell contacts and additionally aid our understanding of the evolution of multicellularity in metazoans.


Asunto(s)
Citoesqueleto de Actina , Caenorhabditis elegans , alfa Catenina , Animales , Citoesqueleto de Actina/química , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/ultraestructura , Actinas/química , Actinas/metabolismo , Actinas/ultraestructura , alfa Catenina/química , alfa Catenina/metabolismo , Cadherinas/metabolismo , Mamíferos , Conformación Proteica en Hélice alfa , Dominios Proteicos , Microscopía por Crioelectrón , Adhesión Celular , Comunicación Celular
4.
PLoS One ; 17(2): e0264073, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35176105

RESUMEN

Telomeres are protein-DNA complexes that protect the ends of linear eukaryotic chromosomes. Mammalian telomeric DNA consists of 5'-(TTAGGG)n-3' double-stranded repeats, followed by up to several hundred bases of a 3' single-stranded G-rich overhang. The G-rich overhang is bound by the shelterin component POT1 which interacts with TPP1, the component involved in telomerase recruitment. A previously published crystal structure of the POT1 N-terminal half bound to the high affinity telomeric ligand 5'-TTAGGGTTAG-3' showed that the first six nucleotides, TTAGGG, are bound by the OB1 fold, while the adjacent OB2 binds the last four, TTAG. Here, we report two cryo-EM structures of full-length POT1 bound by the POT1-binding domain of TPP1. The structures differ in the relative orientation of the POT1 OB1 and OB2, suggesting that these two DNA-binding OB folds take up alternative conformations. Supporting DNA binding studies using telomeric ligands in which the OB1 and OB2 binding sites were spaced apart, show that POT1 binds with similar affinities to spaced or contiguous binding sites, suggesting plasticity in DNA binding and a role for the alternative conformations observed. A likely explanation is that the structural flexibility of POT1 enhances binding to the tandemly arranged telomeric repeats and hence increases telomere protection.


Asunto(s)
Microscopía por Crioelectrón/métodos , ADN de Cadena Simple/genética , Complejo Shelterina/química , Proteínas de Unión a Telómeros/química , Telómero/genética , Sitios de Unión , ADN de Cadena Simple/metabolismo , Humanos , Conformación de Ácido Nucleico , Unión Proteica , Conformación Proteica , Complejo Shelterina/genética , Complejo Shelterina/metabolismo , Proteínas de Unión a Telómeros/genética , Proteínas de Unión a Telómeros/metabolismo
5.
Sci Rep ; 9(1): 15450, 2019 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-31664082

RESUMEN

The lipid A biosynthesis pathway is essential in Pseudomonas aeruginosa. LpxA and LpxD are the first and third enzymes in this pathway respectively, and are regarded as promising antibiotic targets. The unique structural similarities between these two enzymes make them suitable targets for dual-binding inhibitors, a characteristic that would decrease the likelihood of mutational resistance and increase cell-based activity. We report the discovery of multiple small molecule ligands that bind to P. aeruginosa LpxA and LpxD, including dual-binding ligands. Binding poses were determined for select compounds by X-ray crystallography. The new structures reveal a previously uncharacterized magnesium ion residing at the core of the LpxD trimer. In addition, ligand binding in the LpxD active site resulted in conformational changes in the distal C-terminal helix-bundle, which forms extensive contacts with acyl carrier protein (ACP) during catalysis. These ligand-dependent conformational changes suggest a potential allosteric influence of reaction intermediates on ACP binding, and vice versa. Taken together, the novel small molecule ligands and their crystal structures provide new chemical scaffolds for ligand discovery targeting lipid A biosynthesis, while revealing structural features of interest for future investigation of LpxD function.


Asunto(s)
Proteínas Bacterianas/metabolismo , Cristalografía por Rayos X/métodos , Pseudomonas aeruginosa/metabolismo , Resonancia por Plasmón de Superficie/métodos , Proteínas Bacterianas/química , Ligandos , Modelos Moleculares , Conformación Proteica
6.
Biochemistry ; 55(40): 5746-5753, 2016 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-27617343

RESUMEN

CCL21 chemokine binds the G protein-coupled receptor CCR7, aiding not only in immune response but also in cancer metastasis. Compared with other chemokines, CCL21 has a unique extended unstructured C-terminus that is truncated in some naturally occurring variants. We have determined the X-ray crystallographic structure of a truncated CCL21 (residues 1-79) lacking the extended C-terminus and identified, via two-dimensional nuclear magnetic resonance (NMR), a putative sulfotyrosine-binding site that may recognize such post-translationally modified tyrosine residues on the receptor. Compared to the previously determined NMR structure of full-length CCL21, the crystal structure presents new druggable binding hot spots resulting from an alternative N-loop conformation. In addition, whereas the previous NMR structure did not provide any structural information after residue 70, the C-terminus of the truncated CCL21, ordered up to Ala77 in our crystal structure, is placed near the N-loop and sulfotyrosine-binding site, indicating that the extended C-terminus of full-length CCL21 can interact with this important region for receptor binding. These observations suggest a potential origin for the autoinhibition of CCL21 activity that was recently described. The new crystal structure and binding hot spot analysis have important implications for the function of the CCL21 C-terminus and drug discovery.


Asunto(s)
Quimiocina CCL21/química , Tirosina/análogos & derivados , Sitios de Unión , Quimiocina CCL21/metabolismo , Cristalografía por Rayos X , Resonancia Magnética Nuclear Biomolecular , Conformación Proteica , Tirosina/metabolismo
7.
J Med Chem ; 59(9): 4342-51, 2016 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-27058821

RESUMEN

CXCL12 is a human chemokine that recognizes the CXCR4 receptor and is involved in immune responses and metastatic cancer. Interactions between CXCL12 and CXCR4 are an important drug target but, like other elongated protein-protein interfaces, present challenges for small molecule ligand discovery due to the relatively shallow and featureless binding surfaces. Calculations using an NMR complex structure revealed a binding hot spot on CXCL12 that normally interacts with the I4/I6 residues from CXCR4. Virtual screening was performed against the NMR model, and subsequent testing has verified the specific binding of multiple docking hits to this site. Together with our previous results targeting two other binding pockets that recognize sulfotyrosine residues (sY12 and sY21) of CXCR4, including a new analog against the sY12 binding site reported herein, we demonstrate that protein-protein interfaces can often possess multiple sites for engineering specific small molecule ligands that provide lead compounds for subsequent optimization by fragment based approaches.


Asunto(s)
Quimiocina CXCL12/metabolismo , Receptores CXCR4/metabolismo , Sitios de Unión , Humanos , Ligandos , Espectroscopía de Resonancia Magnética , Estructura Molecular
8.
Biochemistry ; 54(38): 5937-48, 2015 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-26352800

RESUMEN

In Gram-negative bacteria, the first step of lipid A biosynthesis is catalyzed by UDP-N-acetylglucosamine acyltransferase (LpxA) through the transfer of a R-3-hydroxyacyl chain from the acyl carrier protein (ACP) to the 3-hydroxyl group of UDP-GlcNAc. Previous studies suggest that LpxA is a critical determinant of the acyl chain length found in lipid A, which varies among species of bacteria. In Escherichia coli and Leptospira interrogans, LpxA prefers to incorporate longer R-3-hydroxyacyl chains (C14 and C12, respectively), whereas in Pseudomonas aeruginosa, the enzyme is selective for R-3-hydroxydecanoyl, a 10-hydrocarbon long acyl chain. We now report three P. aeruginosa LpxA crystal structures: apo protein, substrate complex with UDP-GlcNAc, and product complex with UDP-3-O-(R-3-hydroxydecanoyl)-GlcNAc. A comparison between the apo form and complexes identifies key residues that position UDP-GlcNAc appropriately for catalysis and supports the role of catalytic His121 in activating the UDP-GlcNAc 3-hydroxyl group for nucleophilic attack during the reaction. The product-complex structure, for the first time, offers structural insights into how Met169 serves to constrain the length of the acyl chain and thus functions as the so-called hydrocarbon ruler. Furthermore, compared with ortholog LpxA structures, the purported oxyanion hole, formed by the backbone amide group of Gly139, displays a different conformation in P. aeruginosa LpxA, which suggests flexibility of this structural feature important for catalysis and the potential need for substrate-induced conformational change in catalysis. Taken together, the three structures provide valuable insights into P. aeruginosa LpxA catalysis and substrate specificity as well as templates for future inhibitor discovery.


Asunto(s)
Aciltransferasas/química , Pseudomonas aeruginosa/enzimología , Aciltransferasas/metabolismo , Secuencia de Aminoácidos , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Conformación Proteica , Multimerización de Proteína , Infecciones por Pseudomonas/microbiología , Pseudomonas aeruginosa/química , Pseudomonas aeruginosa/metabolismo , Especificidad por Sustrato , Uridina Difosfato N-Acetilglucosamina/metabolismo
9.
J Am Chem Soc ; 137(25): 8086-95, 2015 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-26057252

RESUMEN

Ligand binding can change the pKa of protein residues and influence enzyme catalysis. Herein, we report three ultrahigh resolution X-ray crystal structures of CTX-M ß-lactamase, directly visualizing protonation state changes along the enzymatic pathway: apo protein at 0.79 Å, precovalent complex with nonelectrophilic ligand at 0.89 Å, and acylation transition state (TS) analogue at 0.84 Å. Binding of the noncovalent ligand induces a proton transfer from the catalytic Ser70 to the negatively charged Glu166, and the formation of a low-barrier hydrogen bond (LBHB) between Ser70 and Lys73, with a length of 2.53 Å and the shared hydrogen equidistant from the heteroatoms. QM/MM reaction path calculations determined the proton transfer barrier to be 1.53 kcal/mol. The LBHB is absent in the other two structures although Glu166 remains neutral in the covalent complex. Our data represents the first X-ray crystallographic example of a hydrogen engaged in an enzymatic LBHB, and demonstrates that desolvation of the active site by ligand binding can provide a protein microenvironment conducive to LBHB formation. It also suggests that LBHBs may contribute to stabilization of the TS in general acid/base catalysis together with other preorganized features of enzyme active sites. These structures reconcile previous experimental results suggesting alternatively Glu166 or Lys73 as the general base for acylation, and underline the importance of considering residue protonation state change when modeling protein-ligand interactions. Additionally, the observation of another LBHB (2.47 Å) between two conserved residues, Asp233 and Asp246, suggests that LBHBs may potentially play a special structural role in proteins.


Asunto(s)
Escherichia coli/enzimología , beta-Lactamasas/química , Cristalografía por Rayos X , Escherichia coli/química , Enlace de Hidrógeno , Modelos Moleculares , Conformación Proteica , Protones
10.
J Med Chem ; 57(22): 9693-9, 2014 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-25356720

RESUMEN

CXCL12 binds to CXCR4, promoting both chemotaxis of lymphocytes and metastasis of cancer cells. We previously identified small molecule ligands that bind CXCL12 and block CXCR4-mediated chemotaxis. We now report a 1.9 Å resolution X-ray structure of CXCL12 bound by such a molecule at a site normally bound by sY21 of CXCR4. The complex structure reveals binding hot spots for future inhibitor design and suggests a new approach to targeting CXCL12-CXCR4 signaling in drug discovery.


Asunto(s)
Antineoplásicos/química , Quimiocina CXCL12/química , Cristalografía por Rayos X/métodos , Receptores CXCR4/química , Sitios de Unión , Quimiotaxis , Diseño de Fármacos , Humanos , Ligandos , Espectroscopía de Resonancia Magnética , Simulación del Acoplamiento Molecular , Unión Proteica , Estructura Terciaria de Proteína , Transducción de Señal , Relación Estructura-Actividad
11.
J Biol Chem ; 289(13): 8839-51, 2014 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-24523409

RESUMEN

The androgen receptor (AR) is a ligand-activated transcription factor that is essential for prostate cancer development. It is activated by androgens through its ligand-binding domain (LBD), which consists predominantly of 11 α-helices. Upon ligand binding, the last helix is reorganized to an agonist conformation termed activator function-2 (AF-2) for coactivator binding. Several coactivators bind to the AF-2 pocket through conserved LXXLL or FXXLF sequences to enhance the activity of the receptor. Recently, a small compound-binding surface adjacent to AF-2 has been identified as an allosteric modulator of the AF-2 activity and is termed binding function-3 (BF-3). However, the role of BF-3 in vivo is currently unknown, and little is understood about what proteins can bind to it. Here we demonstrate that a duplicated GARRPR motif at the N terminus of the cochaperone Bag-1L functions through the BF-3 pocket. These findings are supported by the fact that a selective BF-3 inhibitor or mutations within the BF-3 pocket abolish the interaction between the GARRPR motif(s) and the BF-3. Conversely, amino acid exchanges in the two GARRPR motifs of Bag-1L can impair the interaction between Bag-1L and AR without altering the ability of Bag-1L to bind to chromatin. Furthermore, the mutant Bag-1L increases androgen-dependent activation of a subset of AR targets in a genome-wide transcriptome analysis, demonstrating a repressive function of the GARRPR/BF-3 interaction. We have therefore identified GARRPR as a novel BF-3 regulatory sequence important for fine-tuning the activity of the AR.


Asunto(s)
Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Receptores Androgénicos/metabolismo , Factores de Transcripción/química , Factores de Transcripción/metabolismo , Regulación Alostérica , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Línea Celular , Proteínas de Unión al ADN/genética , Humanos , Mutación , Oligopéptidos/química , Oligopéptidos/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Receptores Androgénicos/química , Receptores Androgénicos/genética , Secuencias Repetitivas de Aminoácido , Factores de Transcripción/genética , Activación Transcripcional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...