Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cereb Cortex ; 32(12): 2555-2574, 2022 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-34730185

RESUMEN

Noninvasive diffusion-weighted magnetic resonance imaging (dMRI) can be used to map the neural connectivity between distinct areas in the intact brain, but the standard resolution achieved fundamentally limits the sensitivity of such maps. We investigated the sensitivity and specificity of high-resolution postmortem dMRI and probabilistic tractography in rhesus macaque brains to produce retinotopic maps of the lateral geniculate nucleus (LGN) and extrastriate cortical visual area V5/MT based on their topographic connections with the previously established functional retinotopic map of primary visual cortex (V1). We also replicated the differential connectivity of magnocellular and parvocellular LGN compartments with V1 across visual field positions. Predicted topographic maps based on dMRI data largely matched the established retinotopy of both LGN and V5/MT. Furthermore, tractography based on in vivo dMRI data from the same macaque brains acquired at standard field strength (3T) yielded comparable topographic maps in many cases. We conclude that tractography based on dMRI is sensitive enough to reveal the intrinsic organization of ordered connections between topographically organized neural structures and their resultant functional organization.


Asunto(s)
Corteza Visual , Vías Visuales , Animales , Imagen de Difusión por Resonancia Magnética , Cuerpos Geniculados/diagnóstico por imagen , Macaca mulatta , Corteza Visual/diagnóstico por imagen , Vías Visuales/diagnóstico por imagen
2.
Cereb Cortex ; 26(10): 3928-3944, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27371764

RESUMEN

Extrastriate visual area V5/MT in primates is defined both structurally by myeloarchitecture and functionally by distinct responses to visual motion. Myelination is directly identifiable from postmortem histology but also indirectly by image contrast with structural magnetic resonance imaging (sMRI). First, we compared the identification of V5/MT using both sMRI and histology in Rhesus macaques. A section-by-section comparison of histological slices with in vivo and postmortem sMRI for the same block of cortical tissue showed precise correspondence in localizing heavy myelination for V5/MT and neighboring MST. Thus, sMRI in macaques accurately locates histologically defined myelin within areas known to be motion selective. Second, we investigated the functionally homologous human motion complex (hMT+) using high-resolution in vivo imaging. Humans showed considerable intersubject variability in hMT+ location, when defined with myelin-weighted sMRI signals to reveal structure. When comparing sMRI markers to functional MRI in response to moving stimuli, a region of high myelin signal was generally located within the hMT+ complex. However, there were considerable differences in the alignment of structural and functional markers between individuals. Our results suggest that variation in area identification for hMT+ based on structural and functional markers reflects individual differences in human regional brain architecture.


Asunto(s)
Variación Biológica Individual , Corteza Visual/diagnóstico por imagen , Corteza Visual/fisiología , Percepción Visual/fisiología , Adulto , Animales , Mapeo Encefálico , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Macaca mulatta , Imagen por Resonancia Magnética , Masculino , Vaina de Mielina , Especificidad de la Especie , Corteza Visual/anatomía & histología , Vías Visuales/anatomía & histología , Vías Visuales/diagnóstico por imagen , Vías Visuales/fisiología , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA