Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Bioeng Biotechnol ; 10: 1005051, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36338120

RESUMEN

Human fibrotic diseases constitute a major health problem worldwide. Fibrosis involves significant etiological heterogeneity and encompasses a wide spectrum of diseases affecting various organs. To date, many fibrosis targeted therapeutic agents failed due to inadequate efficacy and poor prognosis. In order to dissect disease mechanisms and develop therapeutic solutions for fibrosis patients, in vitro disease models have gone a long way in terms of platform development. The introduction of engineered organ-on-a-chip platforms has brought a revolutionary dimension to the current fibrosis studies and discovery of anti-fibrotic therapeutics. Advances in human induced pluripotent stem cells and tissue engineering technologies are enabling significant progress in this field. Some of the most recent breakthroughs and emerging challenges are discussed, with an emphasis on engineering strategies for platform design, development, and application of machine learning on these models for anti-fibrotic drug discovery. In this review, we discuss engineered designs to model fibrosis and how biosensor and machine learning technologies combine to facilitate mechanistic studies of fibrosis and pre-clinical drug testing.

2.
Eur Heart J ; 42(32): 3063-3073, 2021 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-34263907

RESUMEN

AIMS: The aim of this study was to determine the frequency of heterozygous truncating ALPK3 variants (ALPK3tv) in patients with hypertrophic cardiomyopathy (HCM) and confirm their pathogenicity using burden testing in independent cohorts and family co-segregation studies. METHODS AND RESULTS: In a discovery cohort of 770 index patients with HCM, 12 (1.56%) were heterozygous for ALPK3tv [odds ratio(OR) 16.11, 95% confidence interval (CI) 7.94-30.02, P = 8.05e-11] compared to the Genome Aggregation Database (gnomAD) population. In a validation cohort of 2047 HCM probands, 32 (1.56%) carried heterozygous ALPK3tv (OR 16.17, 95% CI 10.31-24.87, P < 2.2e-16, compared to gnomAD). Combined logarithm of odds score in seven families with ALPK3tv was 2.99. In comparison with a cohort of genotyped patients with HCM (n = 1679) with and without pathogenic sarcomere gene variants (SP+ and SP-), ALPK3tv carriers had a higher prevalence of apical/concentric patterns of hypertrophy (60%, P < 0.001) and of a short PR interval (10%, P = 0.009). Age at diagnosis and maximum left ventricular wall thickness were similar to SP- and left ventricular systolic impairment (6%) and non-sustained ventricular tachycardia (31%) at baseline similar to SP+. After 5.3 ± 5.7 years, 4 (9%) patients with ALPK3tv died of heart failure or had cardiac transplantation (log-rank P = 0.012 vs. SP- and P = 0.425 vs. SP+). Imaging and histopathology showed extensive myocardial fibrosis and myocyte vacuolation. CONCLUSIONS: Heterozygous ALPK3tv are pathogenic and segregate with a characteristic HCM phenotype.


Asunto(s)
Cardiomiopatía Hipertrófica , Proteínas Musculares/genética , Proteínas Quinasas/genética , Cardiomiopatía Hipertrófica/genética , Heterocigoto , Humanos , Mutación , Sarcómeros
3.
J Mol Cell Cardiol ; 160: 97-110, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34216608

RESUMEN

Angiotensin II (Ang II) presents a critical mediator in various pathological conditions such as non-genetic cardiomyopathy. Osmotic pump infusion in rodents is a commonly used approach to model cardiomyopathy associated with Ang II. However, profound differences in electrophysiology and pharmacokinetics between rodent and human cardiomyocytes may limit predictability of animal-based experiments. This study investigates the application of an Organ-on-a-chip (OOC) system in modeling Ang II-induced progressive cardiomyopathy. The disease model is constructed to recapitulate myocardial response to Ang II in a temporal manner. The long-term tissue cultivation and non-invasive functional readouts enable monitoring of both acute and chronic cardiac responses to Ang II stimulation. Along with mapping of cytokine secretion and proteomic profiles, this model presents an opportunity to quantitatively measure the dynamic pathological changes that could not be otherwise identified in animals. Further, we present this model as a testbed to evaluate compounds that target Ang II-induced cardiac remodeling. Through assessing the effects of losartan, relaxin, and saracatinib, the drug screening data implicated multifaceted cardioprotective effects of relaxin in restoring contractile function and reducing fibrotic remodeling. Overall, this study provides a controllable platform where cardiac activities can be explicitly observed and tested over the pathological process. The facile and high-content screening can facilitate the evaluation of potential drug candidates in the pre-clinical stage.


Asunto(s)
Angiotensina II/efectos adversos , Cardiomiopatías/inducido químicamente , Cardiomiopatías/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , Animales , Cardiomiopatías/patología , Cardiotónicos/farmacología , Línea Celular , Supervivencia Celular/efectos de los fármacos , Técnicas de Cocultivo , Evaluación Preclínica de Medicamentos/métodos , Fibroblastos/metabolismo , Fibrosis , Humanos , Células Madre Pluripotentes Inducidas/citología , Dispositivos Laboratorio en un Chip , Losartán/farmacología , Ratones , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Proyectos Piloto , Proteoma , Proteómica/métodos , Proteínas Recombinantes/farmacología , Relaxina/farmacología , Remodelación Ventricular/efectos de los fármacos
4.
NPJ Regen Med ; 4: 18, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31452940

RESUMEN

The lymphatic vasculature mediates essential physiological functions including fluid homeostasis, lipid and hormone transport, and immune cell trafficking. Recent studies have suggested that promoting lymphangiogenesis enhances cardiac repair following injury, but it is unknown whether lymphangiogenesis is required for cardiac regeneration. Here, we describe the anatomical distribution, regulation, and function of the cardiac lymphatic network in a highly regenerative zebrafish model system using transgenic reporter lines and loss-of-function approaches. We show that zebrafish lacking functional vegfc and vegfd signaling are devoid of a cardiac lymphatic network and display cardiac hypertrophy in the absence of injury, suggesting a role for these vessels in cardiac tissue homeostasis. Using two different cardiac injury models, we report a robust lymphangiogenic response following cryoinjury, but not following apical resection injury. Although the majority of mutants lacking functional vegfc and vegfd signaling were able to mount a full regenerative response even in the complete absence of a cardiac lymphatic vasculature, cardiac regeneration was severely impaired in a subset of mutants, which was associated with heightened pro-inflammatory cytokine signaling. These findings reveal a context-dependent requirement for the lymphatic vasculature during cardiac growth and regeneration.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...