Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Mammal ; 104(5): 1047-1061, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37800101

RESUMEN

Captive breeding is often used to produce individuals for reintroduction programs in order to reestablish a species in an area where it has become locally extinct. To maximize the likelihood of establishing a self-sustaining population in the wild, an analysis of data from captive breeding programs is commonly undertaken to (1) increase the quantity of individuals and rate at which they can be released, and (2) maintain or improve the genetic and phenotypic quality of individuals. Here we demonstrate how the knowledge gained from these analyses can also be applied to decision-making during the design of subsequent reintroductions to further advance a reintroduction program toward success. We conducted an analysis of data from a captive breeding program for the threatened pookila (Pseudomys novaehollandiae, New Holland mouse) spanning 6 years. We found evidence for relationships between the reproductive output of pookila and behavioral, demographic, experiential, health, and physiological predictors. Based on a biological interpretation of these results, and with reference to a checklist of all known translocation tactics, we recommend 11 specific design elements to maximize the probability of pookila reproduction postrelease (thereby improving the likelihood of reintroduction success). These recommendations should be interpreted as hypotheses to be evaluated and refined in future reintroduction trials for the pookila. The uncertainty around the postrelease survival and reproduction of a species that is common in reintroduction practice warrants the creative use of existing data to inform adaptive management. Indeed, there is a wealth information in well-kept captive breeding records that is currently underused by reintroduction practitioners. The direct integration of knowledge derived from captive breeding (where available) with decision-making for reintroductions, as described here, will help navigate these uncertainties, which would benefit the conservation of both understudied and well-known species around the world.

2.
Biodivers Conserv ; 32(1): 203-225, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36405571

RESUMEN

In response to the ongoing decline of fauna worldwide, there has been growing interest in the rewilding of whole ecosystems outside of fenced sanctuaries or offshore islands. This interest will inevitably result in attempts to restore species where eliminating threats from predators and competitors is extremely challenging or impossible, or reintroductions of predators that will increase predation risk for extant prey (i.e., coexistence conservation). We propose 'Mini Safe Havens' (MSHs) as a potential tool for managing these threats. Mini Safe Havens are refuges that are permanently permeable to the focal species; allowing the emigration of individuals while maintaining gene flow through the boundary. Crucial to the effectiveness of the approach is the ongoing maintenance and monitoring required to preserve a low-to-zero risk of key threats within the MSH; facilitating in-situ learning and adaptation by focal species to these threats, at a rate and intensity of exposure determined by the animals themselves. We trialled the MSH approach for a pilot reintroduction of the Australian native New Holland mouse (Pseudomys novaehollandiae), in the context of a trophic rewilding project to address potential naïveté to a reintroduced native mammalian predator. We found that mice released into a MSH maintained their weight and continued to use the release site beyond 17 months (525 days) post-release. In contrast, individuals in temporary soft-release enclosures tended to lose weight and became undetectable approximately 1-month post-release. We discuss the broad applicability of MSHs for population recovery and reintroductions 'beyond-the-fence' and recommend avenues for further refinement of the approach. Supplementary Information: The online version contains supplementary material available at 10.1007/s10531-022-02495-6.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...