Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 15: 1372904, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38742116

RESUMEN

Introduction: The California purple sea urchin, Strongylocentrotus purpuratus, relies solely on an innate immune system to combat the many pathogens in the marine environment. One aspect of their molecular defenses is the SpTransformer (SpTrf) gene family that is upregulated in response to immune challenge. The gene sequences are highly variable both within and among animals and likely encode thousands of SpTrf isoforms within the sea urchin population. The native SpTrf proteins bind foreign targets and augment phagocytosis of a marine Vibrio. A recombinant (r)SpTrf-E1-Ec protein produced by E. coli also binds Vibrio but does not augment phagocytosis. Methods: To address the question of whether other rSpTrf isoforms function as opsonins and augment phagocytosis, six rSpTrf proteins were expressed in insect cells. Results: The rSpTrf proteins are larger than expected, are glycosylated, and one dimerized irreversibly. Each rSpTrf protein cross-linked to inert magnetic beads (rSpTrf::beads) results in different levels of surface binding and phagocytosis by phagocytes. Initial analysis shows that significantly more rSpTrf::beads associate with cells compared to control BSA::beads. Binding specificity was verified by pre-incubating the rSpTrf::beads with antibodies, which reduces the association with phagocytes. The different rSpTrf::beads show significant differences for cell surface binding and phagocytosis by phagocytes. Furthermore, there are differences among the three distinct types of phagocytes that show specific vs. constitutive binding and phagocytosis. Conclusion: These findings illustrate the complexity and effectiveness of the sea urchin innate immune system driven by the natSpTrf proteins and the phagocyte cell populations that act to neutralize a wide range of foreign pathogens.


Asunto(s)
Fagocitos , Fagocitosis , Proteínas Recombinantes , Animales , Fagocitosis/inmunología , Fagocitos/inmunología , Fagocitos/metabolismo , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Unión Proteica , Strongylocentrotus purpuratus/inmunología , Strongylocentrotus purpuratus/genética , Inmunidad Innata , Isoformas de Proteínas/genética , Isoformas de Proteínas/inmunología , Erizos de Mar/inmunología , Vibrio/inmunología , Proteínas Opsoninas/metabolismo , Proteínas Opsoninas/inmunología
2.
Dev Comp Immunol ; 157: 105179, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38614378

RESUMEN

Marine sponges, including the crumb of bread sponge, Hymeniacidon sinapium, display allorejection responses to contact with conspecifics in both experimental and natural settings. These responses have been used to infer immunocompetence in a variety of marine invertebrates. However, larvae and juveniles from several marine sponge species fuse and form chimeras. Some of these chimeras persist, whereas others eventually break down, revealing a period of allogeneic non-responsiveness that varies depending on the species. Alternatively, for H. sinapium, most pairs of sibling post-larvae and juveniles that settle in contact initiate immediate allorecognition and show the same morphological response progression as the adults. This indicates that allorecognition and response occurs during early metamorphosis. Results from H. sinapium and other sponge species, in addition to annotations of sponge genomes, suggest that allorecognition and immunocompetence in sponges are mediated by distinct systems and may become functional at different times during or after metamorphosis for different species. Consequently, allorecognition may not be a good proxy for the onset of immunocompetence.


Asunto(s)
Larva , Metamorfosis Biológica , Poríferos , Animales , Poríferos/inmunología , Poríferos/genética , Larva/crecimiento & desarrollo , Larva/inmunología , Inmunocompetencia , Quimera
3.
Genes (Basel) ; 15(2)2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38397211

RESUMEN

The SpTransformer (SpTrf) gene family in the purple sea urchin, Strongylocentrotus purpuratus, encodes immune response proteins. The genes are clustered, surrounded by short tandem repeats, and some are present in genomic segmental duplications. The genes share regions of sequence and include repeats in the coding exon. This complex structure is consistent with putative local genomic instability. Instability of the SpTrf gene cluster was tested by 10 days of growth of Escherichia coli harboring bacterial artificial chromosome (BAC) clones of sea urchin genomic DNA with inserts containing SpTrf genes. After the growth period, the BAC DNA inserts were analyzed for size and SpTrf gene content. Clones with multiple SpTrf genes showed a variety of deletions, including loss of one, most, or all genes from the cluster. Alternatively, a BAC insert with a single SpTrf gene was stable. BAC insert instability is consistent with variations in the gene family composition among sea urchins, the types of SpTrf genes in the family, and a reduction in the gene copy number in single coelomocytes. Based on the sequence variability among SpTrf genes within and among sea urchins, local genomic instability of the family may be important for driving sequence diversity in this gene family that would be of benefit to sea urchins in their arms race with marine microbes.


Asunto(s)
Strongylocentrotus purpuratus , Animales , Strongylocentrotus purpuratus/genética , Cromosomas Artificiales Bacterianos/genética , Familia de Multigenes , ADN , Erizos de Mar/genética , Inestabilidad Genómica
4.
BMC Microbiol ; 24(1): 11, 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38172649

RESUMEN

BACKGROUND: Spotting disease infects a variety of sea urchin species across many different marine locations. The disease is characterized by discrete lesions on the body surface composed of discolored necrotic tissue that cause the loss of all surface appendages within the lesioned area. A similar, but separate disease of sea urchins called bald sea urchin disease (BSUD) has overlapping symptoms with spotting disease, resulting in confusions in distinguishing the two diseases. Previous studies have focus on identifying the underlying causative agent of spotting disease, which has resulted in the identification of a wide array of pathogenic bacteria that vary based on location and sea urchin species. Our aim was to investigate the spotting disease infection by characterizing the microbiomes of the animal surface and various tissues. RESULTS: We collected samples of the global body surface, the lesion surface, lesioned and non-lesioned body wall, and coelomic fluid, in addition to samples from healthy sea urchins. 16S rRNA gene was amplified and sequenced from the genomic DNA. Results show that the lesions are composed mainly of Cyclobacteriaceae, Cryomorphaceae, and a few other taxa, and that the microbial composition of lesions is the same for all infected sea urchins. Spotting disease also alters the microbial composition of the non-lesioned body wall and coelomic fluid of infected sea urchins. In our closed aquarium systems, sea urchins contracted spotting disease and BSUD separately and therefore direct comparisons could be made between the microbiomes from diseased and healthy sea urchins. CONCLUSION: Results show that spotting disease and BSUD are separate diseases with distinct symptoms and distinct microbial compositions.


Asunto(s)
Microbiota , Strongylocentrotus purpuratus , Animales , Strongylocentrotus purpuratus/genética , ARN Ribosómico 16S/genética , Erizos de Mar/genética , Bacterias/genética
5.
Pathog Dis ; 812023 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-37715299

RESUMEN

Bald sea urchin disease (BSUD) is most likely a bacterial infection that occurs in a wide range of sea urchin species and causes the loss of surface appendages. The disease has a variety of additional symptoms, which may be the result of the many bacteria that are associated with BSUD. Previous studies have investigated causative agents of BSUD, however, there are few reports on the surface microbiome associated with the infection. Here, we report changes to the surface microbiome on purple sea urchins in a closed marine aquarium that contracted and then recovered from BSUD in addition to the microbiome of healthy sea urchins in a separate aquarium. 16S rRNA gene sequencing shows that microhabitats of different aquaria are characterized by different microbial compositions, and that diseased, recovered, and healthy sea urchins have distinct microbial compositions, which indicates that there is a correlation between microbial shifts and recovery from disease.

6.
Dev Comp Immunol ; 140: 104584, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36343741

RESUMEN

The vertebrate complement cascade is an essential host protection system that functions at the intersection of adaptive and innate immunity. However, it was originally assumed that complement was present only in vertebrates because it was activated by antibodies and functioned with adaptive immunity. Subsequently, the identification of the key component, SpC3, in sea urchins plus a wide range of other invertebrates significantly expanded the concepts of how complement functions. Because there are few reports on the echinoid complement system, an alternative approach to identify complement components in echinoderms is to search the deduced proteins encoded in the genomes. This approach identified known and putative members of the lectin and alternative activation pathways, but members of the terminal pathway are absent. Several types of complement receptors are encoded in the genomes. Complement regulatory proteins composed of complement control protein (CCP) modules are identified that may control the activation pathways and the convertases. Other regulatory proteins without CCP modules are also identified, however regulators of the terminal pathway are absent. The expansion of genes encoding proteins with Macpf domains is noteworthy because this domain is a signature of perforin and proteins in the terminal pathway. The results suggest that the major functions of the echinoid complement system are detection of foreign targets by the proteins that initiate the activation pathways resulting in opsonization by SpC3b fragments to augment phagocytosis and destruction of the foreign targets by the immune cells.


Asunto(s)
Proteínas del Sistema Complemento , Equinodermos , Animales , Activación de Complemento , Invertebrados , Inmunidad Innata , Vertebrados
7.
Front Immunol ; 13: 1000177, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36330505

RESUMEN

The SpTransformer (SpTrf) gene family encodes a set of proteins that function in the sea urchin immune system. The gene sequences have a series of internal repeats in a mosaic pattern that is characteristic of this family. This mosaic pattern necessitates the insertion of large gaps, which has made alignments of the deduced protein sequences computationally difficult such that only manual alignments have been reported previously. Because manual alignments are time consuming for evaluating newly available SpTrf sequences, computational approaches were evaluated for the sequences reported previously. Furthermore, because two different manual alignments of the SpTrf sequences are feasible because of the multiple internal repeats, it is not known whether additional alternative alignments can be identified using different approaches. The bioinformatic program, PRANK, was used because it was designed to align sequences with large gaps and indels. The results from PRANK show that the alignments of the internal repeats are similar to those done manually, suggesting multiple feasible alignments for some regions. GUIDANCE based analysis of the alignments identified regions that were excellent and other regions that failed to align. This suggests that computational approaches have limits for aligning the SpTrf sequences that include multiple repeats and that require inserted gaps. Furthermore, it is unlikely that alternative alignments for the full-length SpTrf sequences will be identified.


Asunto(s)
Biología Computacional , Programas Informáticos , Animales , Secuencia de Aminoácidos , Biología Computacional/métodos , Proteínas , Erizos de Mar
8.
Front Immunol ; 13: 940852, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36119116

RESUMEN

The sea urchin, Strongylocentrotus purpuratus has seven described populations of distinct coelomocytes in the coelomic fluid that are defined by morphology, size, and for some types, by known functions. Of these subtypes, the large phagocytes are thought to be key to the sea urchin cellular innate immune response. The concentration of total coelomocytes in the coelomic fluid increases in response to pathogen challenge. However, there is no quantitative analysis of how the respective coelomocyte populations change over time in response to immune challenge. Accordingly, coelomocytes collected from immunoquiescent, healthy sea urchins were evaluated by flow cytometry for responses to injury and to challenge with either heat-killed Vibrio diazotrophicus, zymosan A, or artificial coelomic fluid, which served as the vehicle control. Responses to the initial injury of coelomic fluid collection or to injection of V. diazotrophicus show significant increases in the concentration of large phagocytes, small phagocytes, and red spherule cells after one day. Responses to zymosan A show decreases in the concentration of large phagocytes and increases in the concentration of small phagocytes. In contrast, responses to injections of vehicle result in decreased concentration of large phagocytes. When these changes in coelomocytes are evaluated based on proportions rather than concentration, the respective coelomocyte proportions are generally maintained in response to injection with V. diazotrophicus and vehicle. However, this is not observed in response to zymosan A and this lack of correspondence between proportions and concentrations may be an outcome of clearing these large particles by the large phagocytes. Variations in coelomocyte populations are also noted for individual sea urchins evaluated at different times for their responses to immune challenge compared to the vehicle. Together, these results demonstrate that the cell populations in sea urchin immune cell populations undergo dynamic changes in vivo in response to distinct immune stimuli and to injury and that these changes are driven by the responses of the large phagocyte populations.


Asunto(s)
Strongylocentrotus purpuratus , Animales , Inmunidad Innata , Fagocitos , Erizos de Mar , Zimosan/farmacología
9.
PLoS One ; 17(5): e0267911, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35522665

RESUMEN

Molecular cloning, gene manipulation, gene expression, protein function, and gene regulation all depend on the introduction of nucleic acids into target cells. Multiple methods have been developed to facilitate such delivery including instrument based microinjection and electroporation, biological methods such as transduction, and chemical methods such as calcium phosphate precipitation, cationic polymers, and lipid based transfection, also known as lipofection. Here we report attempts to lipofect sea urchin coelomocytes using DOTAP lipofection reagent packaged with a range of molecules including fluorochromes, in addition to expression constructs, amplicons, and RNA encoding GFP. DOTAP has low cytotoxicity for coelomocytes, however, lipofection of a variety of molecules fails to produce any signature of success based on results from fluorescence microscopy and flow cytometry. While these results are negative, it is important to report failed attempts so that others conducting similar research do not repeat these approaches. Failure may be the outcome of elevated ionic strength of the coelomocyte culture medium, uptake and degradation of lipoplexes in the endosomal-lysosomal system, failure of the nucleic acids to escape the endosomal vesicles and enter the cytoplasm, and difficulties in lipofecting primary cultures of phagocytic cells. We encourage others to build on this report by using our information to optimize lipofection with a range of other approaches to work towards establishing a successful method of transfecting adult cells from marine invertebrates.


Asunto(s)
Ácidos Nucleicos , Erizos de Mar , Animales , Cationes , Citometría de Flujo , Liposomas , Transfección
10.
Dev Comp Immunol ; 130: 104352, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35065955

RESUMEN

The sea urchin, Strongylocentrotus purpuratus, possesses at least seven distinguishable cell populations in the coelomic fluid, which vary in morphology, size, and function. Of these, the large phagocytes, small phagocytes, and red spherule cells are thought to be key to the echinoid immune response. Because there are currently no effective and rapid means of evaluating sea urchin coelomocytes, we developed a flow cytometry based approach to identify these subsets from unseparated, unstained, live cells. In particular our gating strategy distinguishes between the large phagocytes, small phagocytes, red spherule cells, and a mixed population of vibratile cells and colorless spherule cells. This flow cytometry based analysis increases the speed and improves the reliability of coelomocyte analysis compared to differential cell counts by microscopy.


Asunto(s)
Strongylocentrotus purpuratus , Animales , Citometría de Flujo , Fagocitos , Reproducibilidad de los Resultados , Erizos de Mar
11.
Front Immunol ; 12: 744783, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34867968

RESUMEN

The generation of large immune gene families is often driven by evolutionary pressure exerted on host genomes by their pathogens, which has been described as the immunological arms race. The SpTransformer (SpTrf) gene family from the California purple sea urchin, Strongylocentrotus purpuratus, is upregulated upon immune challenge and encodes the SpTrf proteins that interact with pathogens during an immune response. Native SpTrf proteins bind both bacteria and yeast, and augment phagocytosis of a marine Vibrio, while a recombinant SpTrf protein (rSpTrf-E1) binds a subset of pathogens and a range of pathogen associated molecular patterns. In the sequenced sea urchin genome, there are four SpTrf gene clusters for a total of 17 genes. Here, we report an in-depth analysis of these genes to understand the sequence complexities of this family, its genomic structure, and to derive a putative evolutionary history for the formation of the gene clusters. We report a detailed characterization of gene structure including the intron type and UTRs with conserved transcriptional start sites, the start codon and multiple stop codons, and locations of polyadenylation signals. Phylogenetic and percent mismatch analyses of the genes and the intergenic regions allowed us to predict the last common ancestral SpTrf gene and a theoretical evolutionary history of the gene family. The appearance of the gene clusters from the theoretical ancestral gene may have been driven by multiple duplication and deletion events of regions containing SpTrf genes. Duplications and ectopic insertion events, indels, and point mutations in the exons likely resulted in the extant genes and family structure. This theoretical evolutionary history is consistent with the involvement of these genes in the arms race in responses to pathogens and suggests that the diversification of these genes and their encoded proteins have been selected for based on the survival benefits of pathogen binding and host protection.


Asunto(s)
Inmunidad Innata/genética , Inmunidad Innata/inmunología , Strongylocentrotus purpuratus/genética , Strongylocentrotus purpuratus/inmunología , Animales , Genoma , Filogenia
12.
Front Immunol ; 12: 709165, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34394111

RESUMEN

The appearance of adaptive immunity in jawed vertebrates is termed the immunological 'Big Bang' because of the short evolutionary time over which it developed. Underlying it is the recombination activating gene (RAG)-based V(D)J recombination system, which initiates the sequence diversification of the immunoglobulins and lymphocyte antigen receptors. It was convincingly argued that the RAG1 and RAG2 genes originated from a single transposon. The current dogma postulates that the V(D)J recombination system was established by the split of a primordial vertebrate immune receptor gene into V and J segments by a RAG1/2 transposon, in parallel with the domestication of the same transposable element in a separate genomic locus as the RAG recombinase. Here, based on a new interpretation of previously published data, we propose an alternative evolutionary hypothesis suggesting that two different elements, a RAG1/2 transposase and a Transib transposon invader with RSS-like terminal inverted repeats, co-evolved to work together, resulting in a functional recombination process. This hypothesis offers an alternative understanding of the acquisition of recombinase function by RAGs and the origin of the V(D)J system.


Asunto(s)
Elementos Transponibles de ADN , Proteínas de Unión al ADN/genética , Evolución Molecular , Genes RAG-1/fisiología , Recombinación V(D)J , Animales , Humanos
13.
Front Immunol ; 10: 1298, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31244844

RESUMEN

The adaptive immune response in jawed vertebrates is marked by the ability to diversify somatically specific immune receptor genes. Somatic recombination and hypermutation of gene segments are used to generate extensive repertoires of T and B cell receptors. In contrast, jawless vertebrates utilize a distinct diversification system based on copy choice to assemble their variable lymphocyte receptors. To date, very little evidence for somatic immune gene diversification has been reported in invertebrate species. Here we show that the SpTransformer (SpTrf ; formerly Sp185/333) immune effector gene family members from individual coelomocytes from purple sea urchins undergo somatic diversification by means of gene deletions, duplications, and acquisitions of single nucleotide polymorphisms. While sperm cells from an individual sea urchin have identical SpTrf gene repertoires, single cells from two distinct coelomocyte subpopulations from the same sea urchin exhibit significant variation in the SpTrf gene repertoires. Moreover, the highly diverse gene sequences derived from single coelomocytes are all in-frame, suggesting that an unknown mechanism(s) driving these somatic changes involve stringent selection or correction processes for expression of productive SpTrf transcripts. Together, our findings infer somatic immune gene diversification strategy in an invertebrate.


Asunto(s)
Inmunidad Adaptativa/genética , Evolución Biológica , Coelomomyces/genética , Coelomomyces/inmunología , Variación Genética , Erizos de Mar/microbiología , Animales , Genes Fúngicos , Genoma Fúngico , Genómica/métodos , Genotipo , Familia de Multigenes , Sistemas de Lectura Abierta , Filogenia , Selección Genética
14.
Front Immunol ; 10: 870, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31105697

RESUMEN

Background: The location of coelomocyte proliferation in adult sea urchins is unknown and speculations since the early 1800s have been based on microanatomy and tracer uptake studies. In adult sea urchins (Strongylocentrotus purpuratus) with down-regulated immune systems, coelomocyte numbers increase in response to immune challenge, and whether some or all of these cells are newly proliferated is not known. The gene regulatory network that encodes transcription factors that control hematopoiesis in embryonic and larval sea urchins has not been investigated in adults. Hence, to identify the hematopoietic tissue in adult sea urchins, cell proliferation, expression of phagocyte specific genes, and expression of genes encoding transcription factors that function in the conserved regulatory network that controls hematopoiesis in embryonic and larval sea urchins were investigated for several tissues. Results: Cell proliferation was induced in adult sea urchins either by immune challenge through injection of heat-killed Vibrio diazotrophicus or by cell depletion through aspiration of coelomic fluid. In response to either of these stimuli, newly proliferated coelomocytes constitute only about 10% of the cells in the coelomic fluid. In tissues, newly proliferated cells and cells that express SpTransformer proteins (formerly Sp185/333) that are markers for phagocytes are present in the axial organ, gonad, pharynx, esophagus, and gut with no differences among tissues. The expression level of genes encoding transcription factors that regulate hematopoiesis show that both the axial organ and the pharynx have elevated expression compared to coelomocytes, esophagus, gut, and gonad. Similarly, an RNAseq dataset shows similar results for the axial organ and pharynx, but also suggests that the axial organ may be a site for removal and recycling of cells in the coelomic cavity. Conclusions: Results presented here are consistent with previous speculations that the axial organ may be a site of coelomocyte proliferation and that it may also be a center for cellular removal and recycling. A second site, the pharynx, may also have hematopoietic activity, a tissue that has been assumed to function only as part of the intestinal tract.


Asunto(s)
Hematopoyesis/inmunología , Faringe/inmunología , Erizos de Mar/inmunología , Animales , Proliferación Celular/fisiología , Sistema Inmunológico/inmunología , Fagocitos/inmunología , Factores de Transcripción/inmunología , Vibrio/inmunología
15.
Methods Cell Biol ; 150: 357-389, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30777184

RESUMEN

Sea urchin coelomocytes can be collected in large numbers from adult sea urchins of the species, Strongylocentrotus purpuratus, which typically has 12-40mL of coelomic fluid. Coelomocytes are used for analysis of immune reactions and immune gene expression in addition to basic functions of cells, in particular for understanding structure and modifications of the cytoskeleton in phagocytes. The methods described here include coelomocyte isolation, blocking the clotting reaction, establishing and maintaining primary cultures, separation of different types of coelomocytes into fractions, processing live coelomocytes for light microscopy, fixation and staining for light and electron microscopy, analysis of coelomocyte populations by flow cytometry, and sorting single cells for more detailed follow-up analyses including transcriptomics or genomic characteristics. These methods are provided to make working with coelomocytes accessible to researchers who are unfamiliar with these cells and perhaps to aid others who have worked extensively with invertebrate cells.


Asunto(s)
Separación Celular/métodos , Citometría de Flujo/métodos , Leucocitos/citología , Fagocitos/citología , Erizos de Mar/citología , Manejo de Especímenes/métodos , Animales , Expresión Génica/fisiología , Genómica/métodos , Erizos de Mar/genética , Transcriptoma/genética
16.
PLoS One ; 13(5): e0196890, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29738524

RESUMEN

The purple sea urchin, Strongylocentrotus purpuratus, has a complex and robust immune system that is mediated by a number of multi-gene families including the SpTransformer (SpTrf) gene family (formerly Sp185/333). In response to immune challenge from bacteria and various pathogen-associated molecular patterns, the SpTrf genes are up-regulated in sea urchin phagocytes and express a diverse array of SpTrf proteins. We show here that SpTrf proteins from coelomocytes and isolated by nickel affinity (cNi-SpTrf) bind to Gram-positive and Gram-negative bacteria and to Baker's yeast, Saccharomyces cerevisiae, with saturable kinetics and specificity. cNi-SpTrf opsonization of the marine bacteria, Vibrio diazotrophicus, augments phagocytosis, however, opsonization by the recombinant protein, rSpTrf-E1, does not. Binding by cNi-SpTrf proteins retards growth rates significantly for several species of bacteria. SpTrf proteins, previously thought to be strictly membrane-associated, are secreted from phagocytes in short term cultures and bind V. diazotrophicus that are located both outside of and within phagocytes. Our results demonstrate anti-microbial activities of native SpTrf proteins and suggest variable functions among different SpTrf isoforms. Multiple isoforms may act synergistically to detect a wide array of pathogens and provide flexible and efficient host immunity.


Asunto(s)
Inmunidad Innata/genética , Fagocitosis/genética , Proteínas Recombinantes/genética , Strongylocentrotus purpuratus/genética , Animales , Variación Genética , Bacterias Gramnegativas/genética , Bacterias Gramnegativas/inmunología , Bacterias Gramnegativas/patogenicidad , Bacterias Grampositivas/genética , Bacterias Grampositivas/inmunología , Bacterias Grampositivas/patogenicidad , Fagocitos/inmunología , Fagocitos/microbiología , Fagocitosis/inmunología , Proteínas Recombinantes/inmunología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/inmunología , Strongylocentrotus purpuratus/inmunología , Strongylocentrotus purpuratus/microbiología
17.
Front Immunol ; 8: 725, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28713368

RESUMEN

The complex innate immune system of sea urchins is underpinned by several multigene families including the SpTransformer family (SpTrf; formerly Sp185/333) with estimates of ~50 members, although the family size is likely variable among individuals of Strongylocentrotus purpuratus. The genes are small with similar structure, are tightly clustered, and have several types of repeats in the second of two exons and that surround each gene. The density of repeats suggests that the genes are positioned within regions of genomic instability, which may be required to drive sequence diversification. The second exon encodes the mature protein and is composed of blocks of sequence called elements that are present in mosaics of defined element patterns and are the major source of sequence diversity. The SpTrf genes respond swiftly to immune challenge, but only a single gene is expressed per phagocyte. Many of the mRNAs appear to be edited and encode proteins with altered and/or missense sequence that are often truncated, of which some may be functional. The standard SpTrf protein structure is an N-terminal glycine-rich region, a central RGD motif, a histidine-rich region, and a C-terminal region. Function is predicted from a recombinant protein, rSpTransformer-E1 (rSpTrf-E1), which binds to Vibrio and Saccharomyces, but not to Bacillus, and binds tightly to lipopolysaccharide, ß-1,3-glucan, and flagellin, but not to peptidoglycan. rSpTrf-E1 is intrinsically disordered but transforms to α helical structure in the presence of binding targets including lipopolysaccharide, which may underpin the characteristics of binding to multiple targets. SpTrf proteins associate with coelomocyte membranes, and rSpTrf-E1 binds specifically to phosphatidic acid (PA). When rSpTrf-E1 is bound to PA in liposome membranes, it induces morphological changes in liposomes that correlate with PA clustering and leakage of luminal contents, and it extracts or removes PA from the bilayer. The multitasking activities of rSpTrf-E1 infer multiple and perhaps overlapping activities for the hundreds of native SpTrf proteins that are produced by individual sea urchins. This likely generates a flexible and highly protective immune system for the sea urchin in its marine habitat that it shares with broad arrays of microbes that may be pathogens and opportunists.

18.
Front Immunol ; 8: 481, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28553283

RESUMEN

The purple sea urchin, Strongylocentrotus purpuratus, possesses a sophisticated innate immune system that functions without adaptive capabilities and responds to pathogens effectively by expressing the highly diverse SpTransformer gene family (formerly the Sp185/333 gene family). The swift gene expression response and the sequence diversity of SpTransformer cDNAs suggest that the encoded proteins have immune functions. Individual sea urchins can express up to 260 distinct SpTransformer proteins, and their diversity suggests that different versions may have different functions. Although the deduced proteins are diverse, they share an overall structure of a hydrophobic leader, a glycine-rich N-terminal region, a histidine-rich region, and a C-terminal region. Circular dichroism analysis of a recombinant SpTransformer protein, rSpTransformer-E1 (rSpTrf-E1) demonstrates that it is intrinsically disordered and transforms to α helical in the presence of buffer additives and binding targets. Although native SpTrf proteins are associated with the membranes of perinuclear vesicles in the phagocyte class of coelomocytes and are present on the surface of small phagocytes, they have no predicted transmembrane region or conserved site for glycophosphatidylinositol linkage. To determine whether native SpTrf proteins associate with phagocyte membranes through interactions with lipids, when rSpTrf-E1 is incubated with lipid-embedded nylon strips, it binds to phosphatidic acid (PA) through both the glycine-rich region and the histidine-rich region. Synthetic liposomes composed of PA and phosphatidylcholine show binding between rSpTrf-E1 and PA by fluorescence resonance energy transfer, which is associated with leakage of luminal contents suggesting changes in lipid organization and perhaps liposome lysis. Interactions with liposomes also change membrane curvature leading to liposome budding, fusion, and invagination, which is associated with PA clustering induced by rSpTrf-E1 binding. Longer incubations result in the extraction of PA from the liposomes, which form disorganized clusters. CD shows that when rSpTrf-E1 binds to PA, it changes its secondary structure from disordered to α helical. These results provide evidence for how SpTransformer proteins may associate with molecules that have exposed phosphates including PA on cell membranes and how the characteristic of protein multimerization may drive changes in the organization of membrane lipids.

19.
J Immunol ; 198(7): 2957-2966, 2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-28242650

RESUMEN

The purple sea urchin, Strongylocentrotus purpuratus, expresses a diverse immune response protein family called Sp185/333. A recombinant Sp185/333 protein, previously called rSp0032, shows multitasking antipathogen binding ability, suggesting that the protein family mediates a flexible and effective immune response to multiple foreign cells. Bioinformatic analysis predicts that rSp0032 is intrinsically disordered, and its multiple binding characteristic suggests structural flexibility to adopt different conformations depending on the characteristics of the target. To address the flexibility and structural shifting hypothesis, circular dichroism analysis of rSp0032 suggests that it transforms from disordered (random coil) to α helical structure. This structural transformation may be the basis for the strong affinity between rSp0032 and several pathogen-associated molecular patterns. The N-terminal Gly-rich fragment of rSp0032 and the C-terminal His-rich fragment show unique transformations by either intensifying the α helical structure or changing from α helical to ß strand depending on the solvents and molecules added to the buffer. Based on these results, we propose a name change from rSp0032 to rSpTransformer-E1 to represent its flexible structural conformations and its E1 element pattern. Given that rSpTransformer-E1 shifts its conformation in the presence of solvents and binding targets and that all Sp185/333 proteins are predicted to be disordered, many or all of these proteins may undergo structural transformation to enable multitasking binding activity toward a wide range of targets. Consequently, we also propose an overarching name change for the entire family from Sp185/333 proteins to SpTransformer proteins.


Asunto(s)
Inmunidad Innata/inmunología , Strongylocentrotus purpuratus/inmunología , Secuencia de Aminoácidos , Animales , Dicroismo Circular , Biología Computacional , Variación Genética , Fragmentos de Péptidos/inmunología , Proteínas/inmunología
20.
BMC Genomics ; 17(1): 900, 2016 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-27829352

RESUMEN

BACKGROUND: Genomic regions with repetitive sequences are considered unstable and prone to swift DNA diversification processes. A highly diverse immune gene family of the sea urchin (Strongylocentrotus purpuratus), called Sp185/333, is composed of clustered genes with similar sequence as well as several types of repeats ranging in size from short tandem repeats (STRs) to large segmental duplications. This repetitive structure may have been the basis for the incorrect assembly of this gene family in the sea urchin genome sequence. Consequently, we have resolved the structure of the family and profiled the members by sequencing selected BAC clones using Illumina and PacBio approaches. RESULTS: BAC insert assemblies identified 15 predicted genes that are organized into three clusters. Two of the gene clusters have almost identical flanking regions, suggesting that they may be non-matching allelic clusters residing at the same genomic locus. GA STRs surround all genes and appear in large stretches at locations of putatively deleted genes. GAT STRs are positioned at the edges of segmental duplications that include a subset of the genes. The unique locations of the STRs suggest their involvement in gene deletions and segmental duplications. Genomic profiling of the Sp185/333 gene diversity in 10 sea urchins shows that no gene repertoires are shared among individuals indicating a very high gene diversification rate for this family. CONCLUSIONS: The repetitive genomic structure of the Sp185/333 family that includes STRs in strategic locations may serve as platform for a controlled mechanism which regulates the processes of gene recombination, gene conversion, duplication and deletion. The outcome is genomic instability and allelic mismatches, which may further drive the swift diversification of the Sp185/333 gene family that may improve the immune fitness of the species.


Asunto(s)
Eliminación de Gen , Inestabilidad Genómica , Inmunidad/genética , Repeticiones de Microsatélite , Familia de Multigenes , Duplicaciones Segmentarias en el Genoma , Alelos , Animales , Cromosomas Artificiales Bacterianos , Biblioteca de Genes , Orden Génico , Estudios de Asociación Genética , Sitios Genéticos , Strongylocentrotus purpuratus/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...