Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
2.
Environ Sci Technol ; 57(23): 8617-8627, 2023 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-37235632

RESUMEN

Redox-active functional groups in dissolved organic matter (DOM) are crucial for microbial electron transfer and methane emissions. However, the extent of aquatic DOM redox properties across northern high-latitude lakes and their relationships with DOM composition have not been thoroughly described. We quantified electron donating capacity (EDC) and electron accepting capacity (EAC) in lake DOM from Canada to Alaska and assessed their relationships with parameters from absorbance, fluorescence, and ultrahigh resolution mass spectrometry (FT-ICR MS) analyses. EDC and EAC are strongly tied to aromaticity and negatively related to aliphaticity and protein-like content. Redox-active formulae spanned a range of aromaticity, including highly unsaturated phenolic formulae, and correlated negatively with many aliphatic N and S-containing formulae. This distribution illustrates the compositional diversity of redox-sensitive functional groups and their sensitivity to ecosystem properties such as local hydrology and residence time. Finally, we developed a reducing index (RI) to predict EDC in aquatic DOM from FT-ICR MS spectra and assessed its robustness using riverine DOM. As the hydrology of the northern high-latitudes continues to change, we expect differences in the quantity and partitioning of EDC and EAC within these lakes, which have implications for local water quality and methane emissions.


Asunto(s)
Materia Orgánica Disuelta , Lagos , Ecosistema , Oxidación-Reducción , Metano
3.
Nutr Bull ; 48(1): 134-143, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36649740

RESUMEN

Diet is a key modulator of non-communicable diseases, and food production represents a major cause of environmental degradation and greenhouse gas emissions. Yet, 'nudging' people to make better food choices is challenging, as factors including affordability, convenience and taste often take priority over the achievement of health and environmental benefits. The overall 'Raising the Pulse' project aim is to bring about a step change in the nutritional value of the UK consumers' diet, and to do so in a way that leads to improved health and greater sustainability within the UK food system. To achieve our objectives, UK-specific faba bean production systems that optimise both end users' diets and environmental and economic sustainability of production will be implemented in collaboration with key stakeholders (including industry, the retail sector and government). Palatable faba bean flours will be produced and used to develop 'Raising the Pulse' food products with improved nutritional profile and environmental value. Consumer focus groups and workshops will establish attitudes, preferences, drivers of and barriers to increased consumption of such products. They will inform the co-creation of sensory testing and University-wide intervention studies to evaluate the effects of pulses and 'Raising the Pulse' foods on diet quality, self-reported satiety, nutritional knowledge, consumer acceptance and market potential. Nutrient bioavailability and satiety will be evaluated in a randomised-controlled postprandial human study. Finally, a system model will be developed that predicts changes to land use, environment, business viability, nutrition and human health after substitution of existing less nutritionally beneficial and environmentally sustainable ingredients with pulses. Government health and sustainability priorities will be addressed, helping to define policy-relevant solutions with significant beneficial supply chain economic impacts and transformed sustainable food systems to improve consumer diet quality, health and the environment.


Asunto(s)
Dieta , Alimentos , Humanos , Preferencias Alimentarias , Estado Nutricional , Valor Nutritivo
4.
Nat Geosci ; 14: 899-905, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34917170

RESUMEN

As the global climate warms, increased surface meltwater production on ice shelves may trigger ice-shelf collapse and enhance global sea-level rise. The formation of surface rivers could help prevent ice-shelf collapse if they can efficiently evacuate meltwater. Here, we present observations of the evolution of a surface river into an ice-shelf estuary atop the Petermann Ice Shelf in northwest Greenland, and identify a second estuary at the nearby Ryder Ice Shelf. This surface hydrology process can foster fracturing and enhance calving. At the Petermann estuary, sea ice was observed converging at the river mouth upstream, indicating a flow reversal. Seawater persists in the estuary, after the surrounding icescape is frozen. Along the base of Petermann estuary, linear fractures were initiated at the calving front and propagated upstream along the channel. Similar fractures along estuary channels shaped past large rectilinear calving events at the Petermann and Ryder Ice Shelves. Increased surface melting in a warming world will enhance fluvial incision, promoting estuary development, longitudinal fracturing orthogonal to ice-shelf fronts, and increase rectilinear calving. Estuaries could develop in Antarctica within the next half-century, resulting in increased calving and accelerating both ice loss and global sea-level rise.

5.
Nature ; 591(7848): 78-81, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33658697

RESUMEN

Knowing the extent of human influence on the global hydrological cycle is essential for the sustainability of freshwater resources on Earth1,2. However, a lack of water level observations for the world's ponds, lakes and reservoirs has limited the quantification of human-managed (reservoir) changes in surface water storage compared to its natural variability3. The global storage variability in surface water bodies and the extent to which it is altered by humans therefore remain unknown. Here we show that 57 per cent of the Earth's seasonal surface water storage variability occurs in human-managed reservoirs. Using measurements from NASA's ICESat-2 satellite laser altimeter, which was launched in late 2018, we assemble an extensive global water level dataset that quantifies water level variability for 227,386 water bodies from October 2018 to July 2020. We find that seasonal variability in human-managed reservoirs averages 0.86 metres, whereas natural water bodies vary by only 0.22 metres. Natural variability in surface water storage is greatest in tropical basins, whereas human-managed variability is greatest in the Middle East, southern Africa and the western USA. Strong regional patterns are also found, with human influence driving 67 per cent of surface water storage variability south of 45 degrees north and nearly 100 per cent in certain arid and semi-arid regions. As economic development, population growth and climate change continue to pressure global water resources4, our approach provides a useful baseline from which ICESat-2 and future satellite missions will be able to track human modifications to the global hydrologic cycle.


Asunto(s)
Actividades Humanas , Internacionalidad , Ciclo Hidrológico , Agua/análisis , Agua Subterránea/análisis , Humanos , Hidrología , Imágenes Satelitales , Estaciones del Año
6.
Nat Food ; 2(5): 363-372, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-37117718

RESUMEN

Organic agriculture is widely accepted as a strategy to reduce the environmental impacts of food production and help achieve global climate and biodiversity targets. However, studies concluding that organic farming could satisfy global food demand have overlooked the key role that nitrogen plays in sustaining crop yields. Using a spatially explicit biophysical optimization model that accounts for crop growth nitrogen requirements, we show that, in the absence of synthetic nitrogen fertilizers, the production gap between organic and conventional agriculture increases as organic agriculture expands globally (with organic producing 36% less food for human consumption than conventional in a fully organic world). Yet, by targeting both food supply (via a redesign of the livestock sector) and demand (by reducing average per capita caloric intake), public policies could support a transition towards organic agriculture in 40-60% of the global agricultural area even under current nitrogen limitations thus helping to achieve important environmental and health benefits.

7.
Nat Commun ; 10(1): 4641, 2019 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-31641128

RESUMEN

Agriculture is a major contributor to global greenhouse gas (GHG) emissions and must feature in efforts to reduce emissions. Organic farming might contribute to this through decreased use of farm inputs and increased soil carbon sequestration, but it might also exacerbate emissions through greater food production elsewhere to make up for lower organic yields. To date there has been no rigorous assessment of this potential at national scales. Here we assess the consequences for net GHG emissions of a 100% shift to organic food production in England and Wales using life-cycle assessment. We predict major shortfalls in production of most agricultural products against a conventional baseline. Direct GHG emissions are reduced with organic farming, but when increased overseas land use to compensate for shortfalls in domestic supply are factored in, net emissions are greater. Enhanced soil carbon sequestration could offset only a small part of the higher overseas emissions.

8.
Mol Pharm ; 15(7): 2770-2784, 2018 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-29734810

RESUMEN

Neovascular age-related macular degeneration (wet AMD) results from the pathological angiogenesis of choroidal capillaries, which leak fluid within or below the macular region of the retina. The current standard of care for treating wet AMD utilizes intravitreal injections of anti-VEGF antibodies or antibody fragments to suppress ocular vascular endothelial growth factor (VEGF) levels. While VEGF suppression has been demonstrated in wet AMD patients by serial measurements of free-VEGF concentrations in aqueous humor samples, it is presumed that anti-VEGF molecules also permeate across the inner limiting membrane (ILM) of the retina as well as the retinal pigmented epithelium (RPE) and suppress VEGF levels in the retina and/or choroidal regions. The latter effects are inferred from serial optical coherence tomography (OCT) measurements of fluid in the retinal and sub-retinal spaces. In order to gain theoretical insights to the dynamics of retinal levels of free-VEGF following intravitreal injection of anti-VEGF molecules, we have extended our previous two-compartment pharmacokinetic/pharmacodynamic (PK/PD) model of ranibizumab-VEGF suppression in vitreous and aqueous humors to a three-compartment model that includes the retinal compartment. In the new model, reference values for the macromolecular permeability coefficients between retina and vitreous ( pILM) and between retina and choroid ( pRPE) were estimated from PK data obtained in rabbit. With these values, the three-compartment model was used to re-analyze the aqueous humor levels of free-VEGF obtained in wet AMD patients treated with ranibizumab and to compare them to the simulated retinal levels of free-VEGF, including the observed variability in PK and PD. We have also used the model to explore the impact of varying pILM and pRPE to assess the case in which an anti-VEGF molecule is impermeable to the ILM and to assess the potential effects of AMD pathology on the RPE barrier. Our simulations show that, for the reference values of pILM and pRPE, the simulated duration of VEGF suppression in the retina is approximately 50% shorter than the observed duration of VEGF suppression in the aqueous humor, a finding that may explain the short duration of suppressed disease activity in the "high anti-VEGF demand" patients reported by Fauser and Muether ( Br. J. Ophthalmol. 2016, 100, 1494-1498 ). At 10-fold lower values of pRPE, the durations of VEGF suppression in the retina and aqueous humor are comparable. Lastly we have used the model to explore the impact of dose and binding parameters on the duration and depth of VEGF suppression in the aqueous and retinal compartments. Our simulations with the three-compartment PK/PD model provide new insights into inter-patient variability in response to anti-VEGF therapy and offer a mechanistic framework for developing treatment regimens and molecules that may prolong the duration of retinal VEGF suppression.


Asunto(s)
Inhibidores de la Angiogénesis/farmacología , Ranibizumab/farmacología , Retina/patología , Factor A de Crecimiento Endotelial Vascular/metabolismo , Degeneración Macular Húmeda/tratamiento farmacológico , Inhibidores de la Angiogénesis/uso terapéutico , Humor Acuoso/efectos de los fármacos , Humor Acuoso/metabolismo , Humanos , Inyecciones Intravítreas , Modelos Biológicos , Ranibizumab/uso terapéutico , Retina/efectos de los fármacos , Vasos Retinianos/efectos de los fármacos , Vasos Retinianos/patología , Cuerpo Vítreo/efectos de los fármacos , Cuerpo Vítreo/metabolismo , Degeneración Macular Húmeda/patología
9.
Nat Commun ; 9(1): 1065, 2018 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-29540720

RESUMEN

Albedo-a primary control on surface melt-varies considerably across the Greenland Ice Sheet yet the specific surface types that comprise its dark zone remain unquantified. Here we use UAV imagery to attribute seven distinct surface types to observed albedo along a 25 km transect dissecting the western, ablating sector of the ice sheet. Our results demonstrate that distributed surface impurities-an admixture of dust, black carbon and pigmented algae-explain 73% of the observed spatial variability in albedo and are responsible for the dark zone itself. Crevassing and supraglacial water also drive albedo reduction but due to their limited extent, explain just 12 and 15% of the observed variability respectively. Cryoconite, concentrated in large holes or fluvial deposits, is the darkest surface type but accounts for <1% of the area and has minimal impact. We propose that the ongoing emergence and dispersal of distributed impurities, amplified by enhanced ablation and biological activity, will drive future expansion of Greenland's dark zone.


Asunto(s)
Cubierta de Hielo , Monitoreo del Ambiente , Groenlandia
10.
Sci Total Environ ; 619-620: 606-620, 2018 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-29156279

RESUMEN

In order to improve the efficiency of nutrient use whilst also meeting projected changes in the demand for food within China, new nutrient management frameworks comprised of policy, practice and the means of delivering change are required. These frameworks should be underpinned by systemic analyses of the stocks and flows of nutrients within agricultural production. In this paper, a 30-year time series of the stocks and flows of nitrogen (N), phosphorus (P) and potassium (K) are reported for Huantai county, an exemplar area of intensive agricultural production in the North China Plain. Substance flow analyses were constructed for the major crop systems in the county across the period 1983-2014. On average across all production systems between 2010 and 2014, total annual nutrient inputs to agricultural land in Huantai county remained high at 18.1kt N, 2.7kt P and 7.8kt K (696kg N ha-1; 104kgP ha-1; 300kgK ha-1). Whilst the application of inorganic fertiliser dominated these inputs, crop residues, atmospheric deposition and livestock manure represented significant, yet largely unrecognised, sources of nutrients, depending on the individual production system and the period of time. Whilst nutrient use efficiency (NUE) increased for N and P between 1983 and 2014, future improvements in NUE will require better alignment of nutrient inputs and crop demand. This is particularly true for high-value fruit and vegetable production, in which appropriate recognition of nutrient supply from sources such as manure and from soil reserves will be required to enhance NUE. Aligned with the structural organisation of the public agricultural extension service at county-scale in China, our analyses highlight key areas for the development of future agricultural policy and farm advice in order to rebalance the management of natural resources from a focus on production and growth towards the aims of efficiency and sustainability.

11.
Proc Natl Acad Sci U S A ; 114(50): E10622-E10631, 2017 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-29208716

RESUMEN

Meltwater runoff from the Greenland ice sheet surface influences surface mass balance (SMB), ice dynamics, and global sea level rise, but is estimated with climate models and thus difficult to validate. We present a way to measure ice surface runoff directly, from hourly in situ supraglacial river discharge measurements and simultaneous high-resolution satellite/drone remote sensing of upstream fluvial catchment area. A first 72-h trial for a 63.1-km2 moulin-terminating internally drained catchment (IDC) on Greenland's midelevation (1,207-1,381 m above sea level) ablation zone is compared with melt and runoff simulations from HIRHAM5, MAR3.6, RACMO2.3, MERRA-2, and SEB climate/SMB models. Current models cannot reproduce peak discharges or timing of runoff entering moulins but are improved using synthetic unit hydrograph (SUH) theory. Retroactive SUH applications to two older field studies reproduce their findings, signifying that remotely sensed IDC area, shape, and supraglacial river length are useful for predicting delays in peak runoff delivery to moulins. Applying SUH to HIRHAM5, MAR3.6, and RACMO2.3 gridded melt products for 799 surrounding IDCs suggests their terminal moulins receive lower peak discharges, less diurnal variability, and asynchronous runoff timing relative to climate/SMB model output alone. Conversely, large IDCs produce high moulin discharges, even at high elevations where melt rates are low. During this particular field experiment, models overestimated runoff by +21 to +58%, linked to overestimated surface ablation and possible meltwater retention in bare, porous, low-density ice. Direct measurements of ice surface runoff will improve climate/SMB models, and incorporating remotely sensed IDCs will aid coupling of SMB with ice dynamics and subglacial systems.

12.
Mol Pharm ; 14(8): 2690-2696, 2017 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-28631484

RESUMEN

Intravitreally (IVT) injected macromolecules for the treatment of age-related macular degeneration must permeate through the inner limiting membrane (ILM) into the retina and through the retinal pigment epithelium (RPE) to enter the choroid. A quantitative understanding of intraocular transport mechanisms, elimination pathways, and the effect of molecular size is currently incomplete. We present a semimechanistic, 3-compartment (retina, vitreous, and aqueous) pharmacokinetic (PK) model, expressed using linear ordinary differential equations (ODEs), to describe the molecular concentrations following a single IVT injection. The model was fit to experimental rabbit data, with Fab, Fc, IgG, and IgG null antibodies and antibody fragments, to estimate key ocular pharmacokinetic parameters. The model predicts an ocular half-life, t1/2, which is the same for all compartments and dependent on the hydrodynamic radius (Rh) of the respective molecules, consistent with observations from the experimental data. Estimates of the permeabilities of the RPE and ILM are derived for Rh values ranging from 2.5 to 4.9 nm, and are found to be in good agreement with ex-vivo measurements from bovine eyes. We show that the ratio of these permeabilities largely determines the ratio of the molecular concentrations in the retina and vitreal compartments and their dependence on Rh. The model further provides estimates for the ratio of fluxes corresponding to the elimination pathways from the eye, i.e., aqueous humor to retina/choroid, which increase from 5:1 to 7:1 as Rh decreases. Our semimechanistic model provides a quantitative framework for interpreting ocular PK and the effects of molecule size on rate-determining parameters. We have shown that intraocular permeabilities can be reasonably estimated from 3-compartment ocular PK data and can determine how these parameters influence the half-life, retinal permeation, and elimination of intravitreally injected molecules from the eye.


Asunto(s)
Anticuerpos/metabolismo , Retina/metabolismo , Epitelio Pigmentado de la Retina/metabolismo , Animales , Anticuerpos/administración & dosificación , Coroides/metabolismo , Inmunoglobulina G/metabolismo , Inyecciones Intravítreas , Modelos Teóricos , Conejos , Cuerpo Vítreo/metabolismo
13.
Mol Pharm ; 13(9): 2941-50, 2016 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-26726925

RESUMEN

Intravitreal injection of anti-VEGF (vascular endothelial growth factor) antibodies or antibody fragments has been shown to be a highly effective treatment for neovascular age-related macular degeneration (wet AMD). The ocular half-life (t1/2) of these large molecules, determined in ocular fluids or derived from serum levels, varies with molecular size and is larger in humans than in preclinical animal species. The high affinity binding of VEGF to these molecules lowers the free concentration of VEGF and reduces its occupancy on VEGF receptors in ocular tissues. To understand the biophysical determinants of t1/2 for anti-VEGF antibodies and the time-course of VEGF in ocular fluids, we developed a mechanistic model of intravitreal pharmacokinetics (IVT PK) for anti-VEGF antibodies and combined it with a mechanistic model of the pharmacodynamics (RVR PD) of VEGF suppression by ranibizumab, an anti-VEGF recombinant, humanized monoclonal antibody fragment (Fab). Our IVT PK model predicts that the ocular t1/2 of a large molecule will be approximately four-times the calculated value of its vitreous diffusion time (Tdiff), defined as rvit(2)/6D, where rvit is the radius of the vitreous chamber in that species (modeled as a sphere), and D is the diffusion coefficient of the molecule in physiological saline at 37 °C obtained from the Stokes-Einstein relation. This prediction is verified from a compilation of data and calculations on various large molecules in the human, monkey, rabbit, and rat and is consistent with the reported t1/2 values of ranibizumab in humans (mean value 7.9 days) and the calculated Tdiff of 1.59 days. Our RVR PD model is based on the publication of Saunders et al. (Br. J. Ophthalmol. 2015, 99, 1554-1559) who reported data on the time-course of VEGF levels in aqueous humor samples obtained from 31 patients receiving ranibizumab treatment for wet AMD and developed a compartmental mathematical model to describe the VEGF suppression profiles. We modified Saunders' model with the known 2:1 stoichiometry of ranibizumab-VEGF binding and included the association and dissociation kinetics of the binding reactions. Using the RVR PD model, we reanalyzed Saunders' data to estimate the in vivo dissociation constant (KD) between ranibizumab and VEGF. Our analysis demonstrates the delicate interrelationship between the in vivo KD value and the intravitreal half-life and yields an in vivo KD estimate that is appreciably larger than the in vitro KD estimates reported in the literature. Potential explanations for the difference between the in vivo and in vitro KD values, which appear to reflect the different methodologies and experimental conditions, are discussed. We conclude that the combined mechanistic model of IVT PK and RVR PD provides a useful framework for simulating the effects of dose, KD, and the molecular weight of VEGF-binding molecules on the duration of VEGF suppression.


Asunto(s)
Ranibizumab/farmacocinética , Ranibizumab/uso terapéutico , Factor A de Crecimiento Endotelial Vascular/metabolismo , Degeneración Macular Húmeda/tratamiento farmacológico , Degeneración Macular Húmeda/metabolismo , Inhibidores de la Angiogénesis/administración & dosificación , Inhibidores de la Angiogénesis/farmacocinética , Inhibidores de la Angiogénesis/uso terapéutico , Animales , Haplorrinos , Humanos , Inyecciones Intravítreas , Cinética , Modelos Teóricos , Conejos , Ranibizumab/administración & dosificación , Ratas , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidores
16.
Proc Natl Acad Sci U S A ; 112(4): 1001-6, 2015 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-25583477

RESUMEN

Thermally incised meltwater channels that flow each summer across melt-prone surfaces of the Greenland ice sheet have received little direct study. We use high-resolution WorldView-1/2 satellite mapping and in situ measurements to characterize supraglacial water storage, drainage pattern, and discharge across 6,812 km(2) of southwest Greenland in July 2012, after a record melt event. Efficient surface drainage was routed through 523 high-order stream/river channel networks, all of which terminated in moulins before reaching the ice edge. Low surface water storage (3.6 ± 0.9 cm), negligible impoundment by supraglacial lakes or topographic depressions, and high discharge to moulins (2.54-2.81 cm⋅d(-1)) indicate that the surface drainage system conveyed its own storage volume every <2 d to the bed. Moulin discharges mapped inside ∼52% of the source ice watershed for Isortoq, a major proglacial river, totaled ∼41-98% of observed proglacial discharge, highlighting the importance of supraglacial river drainage to true outflow from the ice edge. However, Isortoq discharges tended lower than runoff simulations from the Modèle Atmosphérique Régional (MAR) regional climate model (0.056-0.112 km(3)⋅d(-1) vs. ∼0.103 km(3)⋅d(-1)), and when integrated over the melt season, totaled just 37-75% of MAR, suggesting nontrivial subglacial water storage even in this melt-prone region of the ice sheet. We conclude that (i) the interior surface of the ice sheet can be efficiently drained under optimal conditions, (ii) that digital elevation models alone cannot fully describe supraglacial drainage and its connection to subglacial systems, and (iii) that predicting outflow from climate models alone, without recognition of subglacial processes, may overestimate true meltwater export from the ice sheet to the ocean.

17.
Proc Natl Acad Sci U S A ; 111(13): 4788-91, 2014 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-24639551

RESUMEN

Rivers provide critical water supply for many human societies and ecosystems, yet global knowledge of their flow rates is poor. We show that useful estimates of absolute river discharge (in cubic meters per second) may be derived solely from satellite images, with no ground-based or a priori information whatsoever. The approach works owing to discovery of a characteristic scaling law uniquely fundamental to natural rivers, here termed a river's at-many-stations hydraulic geometry. A first demonstration using Landsat Thematic Mapper images over three rivers in the United States, Canada, and China yields absolute discharges agreeing to within 20-30% of traditional in situ gauging station measurements and good tracking of flow changes over time. Within such accuracies, the door appears open for quantifying river resources globally with repeat imaging, both retroactively and henceforth into the future, with strong implications for water resource management, food security, ecosystem studies, flood forecasting, and geopolitics.


Asunto(s)
Internacionalidad , Ríos , Comunicaciones por Satélite , Agua , Conservación de los Recursos Naturales , Estudios de Factibilidad , Fenómenos Geológicos , Humanos , Hidrodinámica , Modelos Teóricos , Abastecimiento de Agua
18.
Proc Natl Acad Sci U S A ; 110(13): E1191-5, 2013 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-23487747

RESUMEN

Recent historic observed lows in Arctic sea ice extent, together with climate model projections of additional ice reductions in the future, have fueled speculations of potential new trans-Arctic shipping routes linking the Atlantic and Pacific Oceans. However, numerical studies of how projected geophysical changes in sea ice will realistically impact ship navigation are lacking. To address this deficiency, we analyze seven climate model projections of sea ice properties, assuming two different climate change scenarios [representative concentration pathways (RCPs) 4.5 and 8.5] and two vessel classes, to assess future changes in peak season (September) Arctic shipping potential. By midcentury, changing sea ice conditions enable expanded September navigability for common open-water ships crossing the Arctic along the Northern Sea Route over the Russian Federation, robust new routes for moderately ice-strengthened (Polar Class 6) ships over the North Pole, and new routes through the Northwest Passage for both vessel classes. Although numerous other nonclimatic factors also limit Arctic shipping potential, these findings have important economic, strategic, environmental, and governance implications for the region.

19.
Percept Mot Skills ; 104(3 Pt 1): 707-21, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17688124

RESUMEN

This study investigated several factors influencing the perception of nonlinear relationships in time series graphs. To model real-world data, the graphed data represented different underlying trends and included different sample sizes and amounts of variability. Six trends (increasing and decreasing linear, exponential, asymptotic) were presented on four graph types (histogram, line graph, scatterplot, suspended bar graph). The experiment assessed how these factors affect trend discrimination, with the overall goal of judging what types of graphs lead to better discrimination. Six participants (two psychology professors, four psychology graduate students) viewed graphs on a computer screen and identified the underlying trend. All participants were familiar with the types of trends presented and were aware of the purpose of the experiment. Analysis indicated higher accuracy when variability was lower and sample size was higher. Choice accuracy was higher for nonlinear trends and was highest when line graphs were used.


Asunto(s)
Presentación de Datos/estadística & datos numéricos , Discriminación en Psicología , Percepción de Forma , Estadística como Asunto/métodos , Adulto , Presentación de Datos/tendencias , Femenino , Humanos , Masculino , Persona de Mediana Edad , Registros/estadística & datos numéricos , Tamaño de la Muestra , Detección de Señal Psicológica , Análisis de Sistemas , Factores de Tiempo
20.
Philos Trans A Math Phys Eng Sci ; 365(1856): 1657-76, 2007 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-17513268

RESUMEN

Large uncertainties in the budget of atmospheric methane (CH4) limit the accuracy of climate change projections. Here we describe and quantify an important source of CH4 -- point-source ebullition (bubbling) from northern lakes -- that has not been incorporated in previous regional or global methane budgets. Employing a method recently introduced to measure ebullition more accurately by taking into account its spatial patchiness in lakes, we estimate point-source ebullition for 16 lakes in Alaska and Siberia that represent several common northern lake types: glacial, alluvial floodplain, peatland and thermokarst (thaw) lakes. Extrapolation of measured fluxes from these 16 sites to all lakes north of 45 degrees N using circumpolar databases of lake and permafrost distributions suggests that northern lakes are a globally significant source of atmospheric CH4, emitting approximately 24.2+/-10.5Tg CH4yr(-1). Thermokarst lakes have particularly high emissions because they release CH4 produced from organic matter previously sequestered in permafrost. A carbon mass balance calculation of CH4 release from thermokarst lakes on the Siberian yedoma ice complex suggests that these lakes alone would emit as much as approximately 49000Tg CH4 if this ice complex was to thaw completely. Using a space-for-time substitution based on the current lake distributions in permafrost-dominated and permafrost-free terrains, we estimate that lake emissions would be reduced by approximately 12% in a more probable transitional permafrost scenario and by approximately 53% in a 'permafrost-free' Northern Hemisphere. Long-term decline in CH4 ebullition from lakes due to lake area loss and permafrost thaw would occur only after the large release of CH4 associated thermokarst lake development in the zone of continuous permafrost.


Asunto(s)
Atmósfera , Agua Dulce , Efecto Invernadero , Metano , Alaska , Regiones Árticas , Siberia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...