Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
J Integr Bioinform ; 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38613325

RESUMEN

Modern biological research is increasingly informed by computational simulation experiments, which necessitate the development of methods for annotating, archiving, sharing, and reproducing the conducted experiments. These simulations increasingly require extensive collaboration among modelers, experimentalists, and engineers. The Minimum Information About a Simulation Experiment (MIASE) guidelines outline the information needed to share simulation experiments. SED-ML is a computer-readable format for the information outlined by MIASE, created as a community project and supported by many investigators and software tools. Level 1 Version 5 of SED-ML expands the ability of modelers to define simulations in SED-ML using the Kinetic Simulation Algorithm Onotoloy (KiSAO). While it was possible in Version 4 to define a simulation entirely using KiSAO, Version 5 now allows users to define tasks, model changes, ranges, and outputs using the ontology as well. SED-ML is supported by a growing ecosystem of investigators, model languages, and software tools, including various languages for constraint-based, kinetic, qualitative, rule-based, and spatial models, and many simulation tools, visual editors, model repositories, and validators. Additional information about SED-ML is available at https://sed-ml.org/.

2.
Bioinformatics ; 39(12)2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-38096590

RESUMEN

MOTIVATION: Developing biochemical models in systems biology is a complex, knowledge-intensive activity. Some modelers (especially novices) benefit from model development tools with a graphical user interface. However, as with the development of complex software, text-based representations of models provide many benefits for advanced model development. At present, the tools for text-based model development are limited, typically just a textual editor that provides features such as copy, paste, find, and replace. Since these tools are not "model aware," they do not provide features for: (i) model building such as autocompletion of species names; (ii) model analysis such as hover messages that provide information about chemical species; and (iii) model translation to convert between model representations. We refer to these as BAT features. RESULTS: We present VSCode-Antimony, a tool for building, analyzing, and translating models written in the Antimony modeling language, a human readable representation of Systems Biology Markup Language (SBML) models. VSCode-Antimony is a source editor, a tool with language-aware features. For example, there is autocompletion of variable names to assist with model building, hover messages that aid in model analysis, and translation between XML and Antimony representations of SBML models. These features result from making VSCode-Antimony model-aware by incorporating several sophisticated capabilities: analysis of the Antimony grammar (e.g. to identify model symbols and their types); a query system for accessing knowledge sources for chemical species and reactions; and automatic conversion between different model representations (e.g. between Antimony and SBML). AVAILABILITY AND IMPLEMENTATION: VSCode-Antimony is available as an open source extension in the VSCode Marketplace https://marketplace.visualstudio.com/items?itemName=stevem.vscode-antimony. Source code can be found at https://github.com/sys-bio/vscode-antimony.


Asunto(s)
Antimonio , Programas Informáticos , Humanos , Biología de Sistemas , Lenguaje , Modelos Biológicos , Lenguajes de Programación
3.
ArXiv ; 2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-37731653

RESUMEN

We describe a web-based tool, MakeSBML (https://sys-bio.github.io/makesbml/), that provides an installation-free application for creating, editing, and searching the Biomodels repository for SBML-based models. MakeSBML is a client-based web application that translates models expressed in human-readable Antimony to the System Biology Markup Language (SBML) and vice-versa. Since MakeSBML is a web-based application it requires no installation on the user's part. Currently, MakeSBML is hosted on a GitHub page where the client-based design makes it trivial to move to other hosts. This model for software deployment also reduces maintenance costs since an active server is not required. The SBML modeling language is often used in systems biology research to describe complex biochemical networks and makes reproducing models much easier. However, SBML is designed to be computer-readable, not human-readable. We therefore employ the human-readable Antimony language to make it easy to create and edit SBML models.

4.
J Transl Med ; 21(1): 501, 2023 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-37496031

RESUMEN

Computational models are increasingly used in high-impact decision making in science, engineering, and medicine. The National Aeronautics and Space Administration (NASA) uses computational models to perform complex experiments that are otherwise prohibitively expensive or require a microgravity environment. Similarly, the Food and Drug Administration (FDA) and European Medicines Agency (EMA) have began accepting models and simulations as forms of evidence for pharmaceutical and medical device approval. It is crucial that computational models meet a standard of credibility when using them in high-stakes decision making. For this reason, institutes including NASA, the FDA, and the EMA have developed standards to promote and assess the credibility of computational models and simulations. However, due to the breadth of models these institutes assess, these credibility standards are mostly qualitative and avoid making specific recommendations. On the other hand, modeling and simulation in systems biology is a narrower domain and several standards are already in place. As systems biology models increase in complexity and influence, the development of a credibility assessment system is crucial. Here we review existing standards in systems biology, credibility standards in other science, engineering, and medical fields, and propose the development of a credibility standard for systems biology models.


Asunto(s)
Biología Computacional , Biología de Sistemas , Simulación por Computador
5.
Nucleic Acids Res ; 50(W1): W108-W114, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35524558

RESUMEN

Computational models have great potential to accelerate bioscience, bioengineering, and medicine. However, it remains challenging to reproduce and reuse simulations, in part, because the numerous formats and methods for simulating various subsystems and scales remain siloed by different software tools. For example, each tool must be executed through a distinct interface. To help investigators find and use simulation tools, we developed BioSimulators (https://biosimulators.org), a central registry of the capabilities of simulation tools and consistent Python, command-line and containerized interfaces to each version of each tool. The foundation of BioSimulators is standards, such as CellML, SBML, SED-ML and the COMBINE archive format, and validation tools for simulation projects and simulation tools that ensure these standards are used consistently. To help modelers find tools for particular projects, we have also used the registry to develop recommendation services. We anticipate that BioSimulators will help modelers exchange, reproduce, and combine simulations.


Asunto(s)
Simulación por Computador , Programas Informáticos , Humanos , Bioingeniería , Modelos Biológicos , Sistema de Registros , Investigadores
6.
Nat Commun ; 13(1): 2300, 2022 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-35484108

RESUMEN

While the genomes of normal tissues undergo dynamic changes over time, little is understood about the temporal-spatial dynamics of genomes in premalignant tissues that progress to cancer compared to those that remain cancer-free. Here we use whole genome sequencing to contrast genomic alterations in 427 longitudinal samples from 40 patients with stable Barrett's esophagus compared to 40 Barrett's patients who progressed to esophageal adenocarcinoma (ESAD). We show the same somatic mutational processes are active in Barrett's tissue regardless of outcome, with high levels of mutation, ESAD gene and focal chromosomal alterations, and similar mutational signatures. The critical distinction between stable Barrett's versus those who progress to cancer is acquisition and expansion of TP53-/- cell populations having complex structural variants and high-level amplifications, which are detectable up to six years prior to a cancer diagnosis. These findings reveal the timing of common somatic genome dynamics in stable Barrett's esophagus and define key genomic features specific to progression to esophageal adenocarcinoma, both of which are critical for cancer prevention and early detection strategies.


Asunto(s)
Adenocarcinoma , Esófago de Barrett , Neoplasias Esofágicas , Adenocarcinoma/patología , Esófago de Barrett/genética , Esófago de Barrett/patología , Progresión de la Enfermedad , Neoplasias Esofágicas/patología , Humanos
7.
Evol Appl ; 14(2): 399-415, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33664784

RESUMEN

Barrett's Esophagus is a neoplastic condition which progresses to esophageal adenocarcinoma in 5% of cases. Key events affecting the outcome likely occur before diagnosis of Barrett's and cannot be directly observed; we use phylogenetic analysis to infer such past events. We performed whole-genome sequencing on 4-6 samples from 40 cancer outcome and 40 noncancer outcome patients with Barrett's Esophagus, and inferred within-patient phylogenies of deconvoluted clonal lineages. Spatially proximate lineages clustered in the phylogenies, but temporally proximate ones did not. Lineages with inferred loss-of-function mutations in both copies of TP53 and CDKN2A showed enhanced spatial spread, whereas lineages with loss-of-function mutations in other frequently mutated loci did not. We propose a two-phase model with expansions of TP53 and CKDN2A mutant lineages during initial growth of the segment, followed by relative stasis. Subsequent to initial expansion, mutations in these loci as well as ARID1A and SMARCA4 may show a local selective advantage but do not expand far: The spatial structure of the Barrett's segment remains stable during surveillance even in patients who go on to cancer. We conclude that the cancer/noncancer outcome is strongly affected by early steps in formation of the Barrett's segment.

8.
J Integr Bioinform ; 18(3): 20210021, 2021 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-35330701

RESUMEN

Computational simulation experiments increasingly inform modern biological research, and bring with them the need to provide ways to annotate, archive, share and reproduce the experiments performed. These simulations increasingly require extensive collaboration among modelers, experimentalists, and engineers. The Minimum Information About a Simulation Experiment (MIASE) guidelines outline the information needed to share simulation experiments. SED-ML is a computer-readable format for the information outlined by MIASE, created as a community project and supported by many investigators and software tools. The first versions of SED-ML focused on deterministic and stochastic simulations of models. Level 1 Version 4 of SED-ML substantially expands these capabilities to cover additional types of models, model languages, parameter estimations, simulations and analyses of models, and analyses and visualizations of simulation results. To facilitate consistent practices across the community, Level 1 Version 4 also more clearly describes the use of SED-ML constructs, and includes numerous concrete validation rules. SED-ML is supported by a growing ecosystem of investigators, model languages, and software tools, including eight languages for constraint-based, kinetic, qualitative, rule-based, and spatial models, over 20 simulation tools, visual editors, model repositories, and validators. Additional information about SED-ML is available at https://sed-ml.org/.


Asunto(s)
Lenguaje , Lenguajes de Programación , Ecosistema , Modelos Biológicos , Biología de Sistemas
9.
Cell ; 183(1): 197-210.e32, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-33007263

RESUMEN

Cancer genomes often harbor hundreds of somatic DNA rearrangement junctions, many of which cannot be easily classified into simple (e.g., deletion) or complex (e.g., chromothripsis) structural variant classes. Applying a novel genome graph computational paradigm to analyze the topology of junction copy number (JCN) across 2,778 tumor whole-genome sequences, we uncovered three novel complex rearrangement phenomena: pyrgo, rigma, and tyfonas. Pyrgo are "towers" of low-JCN duplications associated with early-replicating regions, superenhancers, and breast or ovarian cancers. Rigma comprise "chasms" of low-JCN deletions enriched in late-replicating fragile sites and gastrointestinal carcinomas. Tyfonas are "typhoons" of high-JCN junctions and fold-back inversions associated with expressed protein-coding fusions, breakend hypermutation, and acral, but not cutaneous, melanomas. Clustering of tumors according to genome graph-derived features identified subgroups associated with DNA repair defects and poor prognosis.


Asunto(s)
Variación Estructural del Genoma/genética , Genómica/métodos , Neoplasias/genética , Inversión Cromosómica/genética , Cromotripsis , Variaciones en el Número de Copia de ADN/genética , Reordenamiento Génico/genética , Genoma Humano/genética , Humanos , Mutación/genética , Secuenciación Completa del Genoma/métodos
10.
J Integr Bioinform ; 17(2-3)2020 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-32750035

RESUMEN

Biological models often contain elements that have inexact numerical values, since they are based on values that are stochastic in nature or data that contains uncertainty. The Systems Biology Markup Language (SBML) Level 3 Core specification does not include an explicit mechanism to include inexact or stochastic values in a model, but it does provide a mechanism for SBML packages to extend the Core specification and add additional syntactic constructs. The SBML Distributions package for SBML Level 3 adds the necessary features to allow models to encode information about the distribution and uncertainty of values underlying a quantity.


Asunto(s)
Lenguajes de Programación , Biología de Sistemas , Documentación , Lenguaje , Modelos Biológicos , Programas Informáticos
11.
Mol Syst Biol ; 16(8): e9110, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32845085

RESUMEN

Systems biology has experienced dramatic growth in the number, size, and complexity of computational models. To reproduce simulation results and reuse models, researchers must exchange unambiguous model descriptions. We review the latest edition of the Systems Biology Markup Language (SBML), a format designed for this purpose. A community of modelers and software authors developed SBML Level 3 over the past decade. Its modular form consists of a core suited to representing reaction-based models and packages that extend the core with features suited to other model types including constraint-based models, reaction-diffusion models, logical network models, and rule-based models. The format leverages two decades of SBML and a rich software ecosystem that transformed how systems biologists build and interact with models. More recently, the rise of multiscale models of whole cells and organs, and new data sources such as single-cell measurements and live imaging, has precipitated new ways of integrating data with models. We provide our perspectives on the challenges presented by these developments and how SBML Level 3 provides the foundation needed to support this evolution.


Asunto(s)
Biología de Sistemas/métodos , Animales , Humanos , Modelos Logísticos , Modelos Biológicos , Programas Informáticos
12.
J Integr Bioinform ; 17(2-3)2020 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-32628633

RESUMEN

Rule-based modeling is an approach that permits constructing reaction networks based on the specification of rules for molecular interactions and transformations. These rules can encompass details such as the interacting sub-molecular domains and the states and binding status of the involved components. Conceptually, fine-grained spatial information such as locations can also be provided. Through "wildcards" representing component states, entire families of molecule complexes sharing certain properties can be specified as patterns. This can significantly simplify the definition of models involving species with multiple components, multiple states, and multiple compartments. The systems biology markup language (SBML) Level 3 Multi Package Version 1 extends the SBML Level 3 Version 1 core with the "type" concept in the Species and Compartment classes. Therefore, reaction rules may contain species that can be patterns and exist in multiple locations. Multiple software tools such as Simmune and BioNetGen support this standard that thus also becomes a medium for exchanging rule-based models. This document provides the specification for Release 2 of Version 1 of the SBML Level 3 Multi package. No design changes have been made to the description of models between Release 1 and Release 2; changes are restricted to the correction of errata and the addition of clarifications.


Asunto(s)
Lenguajes de Programación , Biología de Sistemas , Documentación , Lenguaje , Modelos Biológicos , Programas Informáticos
13.
J Integr Bioinform ; 16(2)2019 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-31219795

RESUMEN

Computational models can help researchers to interpret data, understand biological functions, and make quantitative predictions. The Systems Biology Markup Language (SBML) is a file format for representing computational models in a declarative form that different software systems can exchange. SBML is oriented towards describing biological processes of the sort common in research on a number of topics, including metabolic pathways, cell signaling pathways, and many others. By supporting SBML as an input/output format, different tools can all operate on an identical representation of a model, removing opportunities for translation errors and assuring a common starting point for analyses and simulations. This document provides the specification for Release 2 of Version 2 of SBML Level 3 Core. The specification defines the data structures prescribed by SBML as well as their encoding in XML, the eXtensible Markup Language. Release 2 corrects some errors and clarifies some ambiguities discovered in Release 1. This specification also defines validation rules that determine the validity of an SBML document, and provides many examples of models in SBML form. Other materials and software are available from the SBML project website at http://sbml.org/.


Asunto(s)
Simulación por Computador , Modelos Biológicos , Lenguajes de Programación , Biología de Sistemas
14.
Bioinformatics ; 35(15): 2660-2662, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-30541069

RESUMEN

MOTIVATION: CNValidator assesses the quality of somatic copy-number calls based on coherency of haplotypes across multiple samples from the same individual. It is applicable to any copy-number calling algorithm, which makes calls independently for each sample. This test is useful in assessing the accuracy of copy-number calls, as well as choosing among alternative copy-number algorithms or tuning parameter values. RESULTS: On a dataset of somatic samples from individuals with Barrett's Esophagus, CNValidator provided feedback on the correctness of sample ploidy calls and also detected data quality issues. AVAILABILITY AND IMPLEMENTATION: CNValidator is available on GitHub at https://github.com/kuhnerlab/CNValidator. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Variaciones en el Número de Copia de ADN , Programas Informáticos , Algoritmos , Haplotipos , Humanos , Ploidias
15.
J Integr Bioinform ; 15(1)2018 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-29522418

RESUMEN

Computational models can help researchers to interpret data, understand biological functions, and make quantitative predictions. The Systems Biology Markup Language (SBML) is a file format for representing computational models in a declarative form that different software systems can exchange. SBML is oriented towards describing biological processes of the sort common in research on a number of topics, including metabolic pathways, cell signaling pathways, and many others. By supporting SBML as an input/output format, different tools can all operate on an identical representation of a model, removing opportunities for translation errors and assuring a common starting point for analyses and simulations. This document provides the specification for Version 2 of SBML Level 3 Core. The specification defines the data structures prescribed by SBML, their encoding in XML (the eXtensible Markup Language), validation rules that determine the validity of an SBML document, and examples of models in SBML form. The design of Version 2 differs from Version 1 principally in allowing new MathML constructs, making more child elements optional, and adding identifiers to all SBML elements instead of only selected elements. Other materials and software are available from the SBML project website at http://sbml.org/.


Asunto(s)
Documentación/normas , Almacenamiento y Recuperación de la Información/normas , Modelos Biológicos , Lenguajes de Programación , Programas Informáticos , Biología de Sistemas/normas , Animales , Simulación por Computador , Guías como Asunto , Humanos , Transducción de Señal
16.
J Bioinform Comput Biol ; 14(6): 1650035, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27774871

RESUMEN

MOTIVATION: Model simulation exchange has been standardized with the Simulation Experiment Description Markup Language (SED-ML), but specialized software is needed to generate simulations in this format. Text-based languages allow researchers to create and modify experimental protocols quickly and easily, and export them to a common machine-readable format. RESULTS: phraSED-ML language allows modelers to use simple text commands to encode various elements of SED-ML (models, tasks, simulations, and results) in a format easy to read and modify. The library can translate this script to SED-ML for use in other softwares. AVAILABILITY: phraSED-ML language specification, libphrasedml library, and source code are available under BSD license from http://phrasedml.sourceforge.net/ .


Asunto(s)
Modelos Teóricos , Lenguajes de Programación , Biología de Sistemas/métodos , Simulación por Computador , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Programas Informáticos , Procesos Estocásticos
17.
J Integr Bioinform ; 13(3): 290, 2016 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-28187406

RESUMEN

Biological models often contain components that have relationships with each other, or that modelers want to treat as belonging to groups with common characteristics or shared metadata. The SBML Level 3 Version 1 Core specification does not provide an explicit mechanism for expressing such relationships, but it does provide a mechanism for SBML packages to extend the Core specification and add additional syntactical constructs. The SBML Groups package for SBML Level 3 adds the necessary features to SBML to allow grouping of model components to be expressed. Such groups do not affect the mathematical interpretation of a model, but they do provide a way to add information that can be useful for modelers and software tools. The SBML Groups package enables a modeler to include definitions of groups and nested groups, each of which may be annotated to convey why that group was created, and what it represents.


Asunto(s)
Modelos Biológicos , Programas Informáticos
18.
J Integr Bioinform ; 12(2): 266, 2015 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-26528564

RESUMEN

Computational models can help researchers to interpret data, understand biological function, and make quantitative predictions. The Systems Biology Markup Language (SBML) is a file format for representing computational models in a declarative form that can be exchanged between different software systems. SBML is oriented towards describing biological processes of the sort common in research on a number of topics, including metabolic pathways, cell signaling pathways, and many others. By supporting SBML as an input/output format, different tools can all operate on an identical representation of a model, removing opportunities for translation errors and assuring a common starting point for analyses and simulations. This document provides the specification for Version 1 of SBML Level 3 Core. The specification defines the data structures prescribed by SBML as well as their encoding in XML, the eXtensible Markup Language. This specification also defines validation rules that determine the validity of an SBML document, and provides many examples of models in SBML form. Other materials and software are available from the SBML project web site, http://sbml.org/.


Asunto(s)
Gráficos por Computador/normas , Modelos Biológicos , Lenguajes de Programación , Proteoma/metabolismo , Transducción de Señal/fisiología , Biología de Sistemas/normas , Animales , Ontologías Biológicas , Conjuntos de Datos como Asunto/normas , Documentación/normas , Guías como Asunto/normas , Humanos , Almacenamiento y Recuperación de la Información/normas , Internacionalidad
19.
J Integr Bioinform ; 12(2): 271, 2015 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-26528569

RESUMEN

Computational models can help researchers to interpret data, understand biological function, and make quantitative predictions. The Systems Biology Markup Language (SBML) is a file format for representing computational models in a declarative form that can be exchanged between different software systems. SBML is oriented towards describing biological processes of the sort common in research on a number of topics, including metabolic pathways, cell signaling pathways, and many others. By supporting SBML as an input/output format, different tools can all operate on an identical representation of a model, removing opportunities for translation errors and assuring a common starting point for analyses and simulations. This document provides the specification for Version 5 of SBML Level 2. The specification defines the data structures prescribed by SBML as well as their encoding in XML, the eXtensible Markup Language. This specification also defines validation rules that determine the validity of an SBML document, and provides many examples of models in SBML form. Other materials and software are available from the SBML project web site, http://sbml.org.


Asunto(s)
Gráficos por Computador/normas , Modelos Biológicos , Lenguajes de Programación , Proteoma/metabolismo , Transducción de Señal/fisiología , Biología de Sistemas/normas , Animales , Ontologías Biológicas , Conjuntos de Datos como Asunto/normas , Documentación/normas , Guías como Asunto/normas , Humanos , Almacenamiento y Recuperación de la Información/normas , Internacionalidad
20.
J Biol Chem ; 290(39): 23479-95, 2015 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-26205820

RESUMEN

Expression levels in animal muscle tissues and in Escherichia coli vary widely for naturally occurring mammalian myoglobins (Mb). To explore this variation, we developed an in vitro transcription and wheat germ extract-based translation assay to examine quantitatively the factors that govern expression of holoMb. We constructed a library of naturally occurring Mbs from two terrestrial and four deep-diving aquatic mammals and three distal histidine mutants designed to enhance apoglobin stability but decrease hemin affinity. A strong linear correlation is observed between cell-free expression levels of holo-metMb variants and their corresponding apoglobin stabilities, which were measured independently by guanidine HCl-induced unfolding titrations using purified proteins. In contrast, there is little dependence of expression on hemin affinity. Our results confirm quantitatively that deep diving mammals have highly stable Mbs that express to higher levels in animal myocytes, E. coli, and the wheat germ cell-free system than Mbs from terrestrial mammals. Our theoretical analyses show that the rate of aggregation of unfolded apoMb is very large, and as a result, the key factor for high level expression of holoMb, and presumably other heme proteins, is an ultra high fraction of folded, native apoglobin that is capable of rapidly binding hemin. This fraction is determined by the overall equilibrium folding constant and not hemin affinity. These results also demonstrate that the cell-free transcription/translation system can be used as a high throughput platform to screen for apoglobin stability without the need to generate large amounts of protein for in vitro unfolding measurements.


Asunto(s)
Mioglobina/metabolismo , Isoformas de Proteínas/metabolismo , Animales , Sistema Libre de Células , Escherichia coli/genética , Mioglobina/química , Mioglobina/genética , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Estabilidad Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...