Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Cell Death Discov ; 10(1): 128, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38467608

RESUMEN

Ubiquitin-specific peptidase 22 (USP22) is a deubiquitinating enzyme (DUB) that underlies tumorigenicity, proliferation, cell death and differentiation through deubiquitination of histone and non-histone targets. Ubiquitination determines stability, localization and functions of cell fate proteins and controls cell-protective signaling pathways to surveil cell cycle progression. In a variety of carcinomas, lymphomas and leukemias, ubiquitination regulates the tumor-suppressive functions of the promyelocytic leukemia protein (PML), but PML-specific DUBs, DUB-controlled PML ubiquitin sites and the functional consequences of PML (de)ubiquitination remain unclear. Here, we identify USP22 as regulator of PML and the oncogenic acute promyelocytic leukemia (APL) fusion PML-RARα protein stability and identify a destabilizing role of PML residue K394. Additionally, loss of USP22 upregulates interferon (IFN) and IFN-stimulated gene (ISG) expression in APL and induces PML-RARα stabilization and a potentiation of the cell-autonomous sensitivity towards all-trans retinoic acid (ATRA)-mediated differentiation. Our findings imply USP22-dependent surveillance of PML-RARα stability and IFN signaling as important regulator of APL pathogenesis, with implications for viral mimicry, differentiation and cell fate regulation in other leukemia subtypes.

2.
Cell Death Dis ; 15(1): 77, 2024 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-38245534

RESUMEN

Plasma membrane accumulation of phosphorylated mixed lineage kinase domain-like (MLKL) is a hallmark of necroptosis, leading to membrane rupture and inflammatory cell death. Pro-death functions of MLKL are tightly controlled by several checkpoints, including phosphorylation. Endo- and exocytosis limit MLKL membrane accumulation and counteract necroptosis, but the exact mechanisms remain poorly understood. Here, we identify linear ubiquitin chain assembly complex (LUBAC)-mediated M1 poly-ubiquitination (poly-Ub) as novel checkpoint for necroptosis regulation downstream of activated MLKL in cells of human origin. Loss of LUBAC activity inhibits tumor necrosis factor α (TNFα)-mediated necroptosis, not by affecting necroptotic signaling, but by preventing membrane accumulation of activated MLKL. Finally, we confirm LUBAC-dependent activation of necroptosis in primary human pancreatic organoids. Our findings identify LUBAC as novel regulator of necroptosis which promotes MLKL membrane accumulation in human cells and pioneer primary human organoids to model necroptosis in near-physiological settings.


Asunto(s)
Necroptosis , Proteínas Quinasas , Humanos , Necrosis/metabolismo , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Fosforilación , Muerte Celular , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Apoptosis/fisiología
3.
Clin Med (Lond) ; 23(3): 206-212, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37197804

RESUMEN

BACKGROUND: We present the largest study of the frequency and nature of visual complications in a cohort of 350 patients consecutively diagnosed with giant cell arteritis (GCA). METHODS: All individuals were assessed using structured forms and diagnosed using imaging or biopsy. A binary logistic regression model was used to analyse data for predicting visual loss. RESULTS: Visual symptoms occurred in 101 (28.9%) patients, with visual loss in one or both eyes in 48 (13.7%) patients. Four patients had binocular visual loss. Anterior ischaemic optic neuropathy (N=31), retinal artery obstruction (N=8) and occipital stroke (N=2) were the main causes of visual loss. Of the 47 individuals who had repeat visual acuity testing at 7 days, three individuals had improvement to 6/9 or better. After introducing the fast-track pathway, the frequency of visual loss decreased from 18.7% to 11.5%. Age at diagnosis (odds ratio (OR) 1.12) and headache (OR 0.22) were significant determinants of visual loss in a multivariate model. Jaw claudication trended to significance (OR 1.96, p=0.054). CONCLUSIONS: We recorded a visual loss frequency of 13.7% in the largest cohort of patients with GCA examined from a single centre. Although improvement in vision was rare, a dedicated fast-track pathway reduced visual loss. Headache could result in earlier diagnosis and protect against visual loss.


Asunto(s)
Arteritis de Células Gigantes , Neuropatía Óptica Isquémica , Oclusión de la Arteria Retiniana , Humanos , Arteritis de Células Gigantes/complicaciones , Arteritis de Células Gigantes/epidemiología , Arteritis de Células Gigantes/diagnóstico , Neuropatía Óptica Isquémica/etiología , Neuropatía Óptica Isquémica/complicaciones , Trastornos de la Visión/etiología , Trastornos de la Visión/complicaciones , Oclusión de la Arteria Retiniana/complicaciones , Cefalea/etiología
4.
Cell Death Dis ; 13(8): 684, 2022 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-35933402

RESUMEN

Pattern recognition receptors (PRRs) and interferons (IFNs) serve as essential antiviral defense against SARS-CoV-2, the causative agent of the COVID-19 pandemic. Type III IFNs (IFN-λ) exhibit cell-type specific and long-lasting functions in auto-inflammation, tumorigenesis, and antiviral defense. Here, we identify the deubiquitinating enzyme USP22 as central regulator of basal IFN-λ secretion and SARS-CoV-2 infections in human intestinal epithelial cells (hIECs). USP22-deficient hIECs strongly upregulate genes involved in IFN signaling and viral defense, including numerous IFN-stimulated genes (ISGs), with increased secretion of IFN-λ and enhanced STAT1 signaling, even in the absence of exogenous IFNs or viral infection. Interestingly, USP22 controls basal and 2'3'-cGAMP-induced STING activation and loss of STING reversed STAT activation and ISG and IFN-λ expression. Intriguingly, USP22-deficient hIECs are protected against SARS-CoV-2 infection, viral replication, and the formation of de novo infectious particles, in a STING-dependent manner. These findings reveal USP22 as central host regulator of STING and type III IFN signaling, with important implications for SARS-CoV-2 infection and antiviral defense.


Asunto(s)
COVID-19 , Interferón Tipo I , Proteínas de la Membrana/metabolismo , Ubiquitina Tiolesterasa , Antivirales/farmacología , Humanos , Interferón Tipo I/genética , Interferones/metabolismo , Pandemias , SARS-CoV-2 , Ubiquitina Tiolesterasa/metabolismo , Interferón lambda
5.
Int J Mol Sci ; 23(7)2022 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-35408930

RESUMEN

Mutations in the Von Hippel-Lindau (VHL) gene are the driving force in many forms of clear cell renal cell carcinoma (ccRCC) and promote hypoxia-inducible factor (HIF)-dependent tumor proliferation, metastasis and angiogenesis. Despite the progress that has already been made, ccRCC generally remain resistant to conventional therapies and ccRCC patients suffer from metastasis and acquired resistance, highlighting the need for novel therapeutic options. Cysteinyl leukotriene receptor 1 (CysLTR1) antagonists, like zafirlukast, are administered in bronchial asthma to control eicosanoid signaling. Intriguingly, long-term use of zafirlukast decreases cancer risk and leukotriene receptor antagonists inhibit tumor growth, but the mechanisms still remain unexplored. Therefore, we aim to understand the mechanisms of zafirlukast-mediated cell death in ccRCC cells. We show that zafirlukast induces VHL-dependent and TNFα-independent non-apoptotic and non-necroptotic cell death in ccRCC cells. Cell death triggered by zafirlukast could be rescued with antioxidants and the PARP-1 inhibitor Olaparib, and additionally relies on HIF-2α. Finally, MG-132-mediated proteasome inhibition sensitized VHL wild-type cells to zafirlukast-induced cell death and inhibition of HIF-2α rescued zafirlukast- and MG-132-triggered cell death. Together, these results highlight the importance of VHL, HIF and proteasomal degradation in zafirlukast-induced oxidative cell death with potentially novel therapeutic implications for ccRCC.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Carcinoma de Células Renales/tratamiento farmacológico , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/patología , Muerte Celular , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Indoles , Neoplasias Renales/tratamiento farmacológico , Neoplasias Renales/genética , Neoplasias Renales/metabolismo , Estrés Oxidativo , Fenilcarbamatos , Sulfonamidas , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/genética , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/metabolismo
6.
Phys Imaging Radiat Oncol ; 19: 66-71, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34307921

RESUMEN

BACKGROUND AND PURPOSE: In radiation therapy (RT), significant improvements have been made recently particularly in the practices of planning imaging. This study aimed to conduct a cost evaluation between magnetic resonance imaging (MRI) -only and combined computed tomography (CT) and MRI workflows. MATERIALS AND METHODS: The time-driven activity-based costing (TDABC) model was used to conduct a cost evaluation between the two workflows in those steps, where cost differences were expected. Costs were divided into capital costs and operational costs. The former consisted of fixed, one-time expenses, e.g. the purchase of a scanner, whereas the latter were partially based on the amount of activity consumed i.e. time required for image acquisition, image registration and structure contouring. RESULTS: In a review over a period of 10 years for 300 annual prostate cancer patients, the total cost of the workflow steps included in the study for an individual patient applying the MRI-only workflow was 903 € (100%), comprised of 537 € (59%) capital costs and 366 € (41%) operational costs. The corresponding total cost for an individual patient applying the CT + MRI workflow was 922 € (100%), comprised of 197 € (21%) capital costs and 726 € (79%) operational costs. In 10 years for 3000 patients, a total saving of 58,544 € (2%) was achieved with the MRI-only workflow compared with the dual imaging workflow. CONCLUSIONS: MRI-only workflow is a feasible and economic way to perform clinical RT for localized prostate cancer, in particular for medium- and large-sized departments treating a sufficient number of patients.

8.
J Leukoc Biol ; 109(2): 363-371, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32401398

RESUMEN

TNFR1 is a crucial regulator of NF-ĸB-mediated proinflammatory cell survival responses and programmed cell death (PCD). Deregulation of TNFα- and TNFR1-controlled NF-ĸB signaling underlies major diseases, like cancer, inflammation, and autoimmune diseases. Therefore, although being routinely used, antagonists of TNFα might also affect TNFR2-mediated processes, so that alternative approaches to directly antagonize TNFR1 are beneficial. Here, we apply quantitative single-molecule localization microscopy (SMLM) of TNFR1 in physiologic cellular settings to validate and characterize TNFR1 inhibitory substances, exemplified by the recently described TNFR1 antagonist zafirlukast. Treatment of TNFR1-mEos2 reconstituted TNFR1/2 knockout mouse embryonic fibroblasts (MEFs) with zafirlukast inhibited both ligand-independent preligand assembly domain (PLAD)-mediated TNFR1 dimerization as well as TNFα-induced TNFR1 oligomerization. In addition, zafirlukast-mediated inhibition of TNFR1 clustering was accompanied by deregulation of acute and prolonged NF-ĸB signaling in reconstituted TNFR1-mEos2 MEFs and human cervical carcinoma cells. These findings reveal the necessity of PLAD-mediated, ligand-independent TNFR1 dimerization for NF-ĸB activation, highlight the PLAD as central regulator of TNFα-induced TNFR1 oligomerization, and demonstrate that TNFR1-mEos2 MEFs can be used to investigate TNFR1-antagonizing compounds employing single-molecule quantification and functional NF-ĸB assays at physiologic conditions.


Asunto(s)
FN-kappa B/metabolismo , Receptores Tipo I de Factores de Necrosis Tumoral/antagonistas & inhibidores , Transducción de Señal , Imagen Individual de Molécula , Compuestos de Tosilo/farmacología , Factor de Necrosis Tumoral alfa/farmacología , Animales , Línea Celular , Citocinas/biosíntesis , Células HeLa , Humanos , Indoles , Ratones , Fenilcarbamatos , Multimerización de Proteína/efectos de los fármacos , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Receptores Tipo II del Factor de Necrosis Tumoral/metabolismo , Transducción de Señal/efectos de los fármacos , Sulfonamidas , Transcripción Genética/efectos de los fármacos
9.
Clin Med (Lond) ; 21(4): e371-e374, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-35192480

RESUMEN

Giant cell arteritis (GCA) is a systemic vasculitis with numerous potential complications and societal costs. After the publication of international guidelines, we found a number of deficiencies in the local care pathway of patients suspected to have GCA. These included poor referral and management pathways, and absence of dedicated monitoring and follow-up. In this paper, we describe a 10-year transformation which led to our service being nominated for a national award.A comprehensive consensus pathway saw referral numbers rise from 19 to 135 from 2012 to 2019. A consensus management pathway has meant that patients are assessed within 2 days of referral and glucocorticoids started at point of referral. All patients with suspected GCA are clerked and managed according to this agreed pathway which is available on the hospital intranet. The introduction of diagnostic ultrasonography has meant that the need for biopsies has dropped by >80% reducing the annual cost of diagnostics by >£140,000. The introduction of a vasculitis specialist nurse has resulted in improving education, contact and speed of access to our service. The improvements in the service resulted in our service becoming a finalist in the Royal College of Physicians Excellence in Patient Care Award in 2020.


Asunto(s)
Arteritis de Células Gigantes , Biopsia , Arteritis de Células Gigantes/diagnóstico , Arteritis de Células Gigantes/terapia , Humanos , Calidad de la Atención de Salud , Arterias Temporales/diagnóstico por imagen , Arterias Temporales/patología , Ultrasonografía
10.
ACR Open Rheumatol ; 2(7): 407-414, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32530126

RESUMEN

OBJECTIVE: We sought to determine whether follistatin-like protein 1 (FSTL1), a protein produced by articular chondrocytes, promotes healthy articular cartilage and prevents chondrocytes from undergoing terminal differentiation to hypertrophic cells. METHODS: In vitro experiments were performed with immortalized human articular chondrocytes. The cells were transduced with a lentivirus encoding human FSTL1 small hairpin RNA or with an adenovirus encoding FSTL1. A quantitative polymerase chain reaction was used for gene expression analysis. Protein expression was assessed by Western blotting. Co-immunoprecipitation was used to identify interacting partners of FSTL1. FSTL1 expression in human articular cartilage was analyzed using confocal microscopy. RESULTS: Downregulation of FSTL1 expression in transforming growth factor ß (TGFß)-stimulated chondrocyte pellet cultures led to chondrocyte terminal differentiation characterized by poor production of cartilage extracellular matrix and altered expression of genes and proteins involved in cartilage homeostasis, including MMP13, COL10A1, RUNX2, COL2A1, ACAN, Sox9, and phospho-Smad3. We also showed that FSTL1 interacts with TGFß receptor proteins, Alk1 and endoglin, suggesting a potential mechanism for its effects on chondrocytes. Transduction of chondrocytes with an FSTL1 transgene increased COL2A1 expression, whereas it did not affect MMP13 expression. FSTL1 protein expression was decreased in human osteoarthritic cartilage in situ. CONCLUSION: Our data suggest that FSTL1 plays an important role in maintaining healthy articular cartilage and the FSTL1 pathway may represent a therapeutic target for degenerative diseases of cartilage.

11.
Sci Signal ; 13(614)2020 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-31937565

RESUMEN

Ligand-induced tumor necrosis factor receptor 1 (TNFR1) activation controls nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) signaling, cell proliferation, programmed cell death, and survival and is crucially involved in inflammation, autoimmune disorders, and cancer progression. Despite the relevance of TNFR1 clustering for signaling, oligomerization of ligand-free and ligand-activated TNFR1 remains controversial. At present, models range from ligand-independent receptor predimerization to ligand-induced oligomerization. Here, we used quantitative, single-molecule superresolution microscopy to study TNFR1 assembly directly in native cellular settings and at physiological cell surface abundance. In the absence of its ligand TNFα, TNFR1 assembled into monomeric and dimeric receptor units. Upon binding of TNFα, TNFR1 clustered predominantly not only into trimers but also into higher-order oligomers. A functional mutation in the preligand assembly domain of TNFR1 resulted in only monomeric TNFR1, which exhibited impaired ligand binding. In contrast, a form of TNFR1 with a mutation in the ligand-binding CRD2 subdomain retained the monomer-to-dimer ratio of the unliganded wild-type TNFR1 but exhibited no ligand binding. These results underscore the importance of ligand-independent TNFR1 dimerization in NF-κB signaling.


Asunto(s)
Membrana Celular/efectos de los fármacos , Multimerización de Proteína , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Imagen Individual de Molécula/métodos , Factor de Necrosis Tumoral alfa/farmacología , Animales , Apoptosis/efectos de los fármacos , Membrana Celular/metabolismo , Células Cultivadas , Embrión de Mamíferos/citología , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Células HeLa , Humanos , Ratones Noqueados , Ratones Transgénicos , Modelos Moleculares , Mutación , FN-kappa B/metabolismo , Unión Proteica , Transporte de Proteínas/efectos de los fármacos , Receptores Tipo I de Factores de Necrosis Tumoral/química , Receptores Tipo I de Factores de Necrosis Tumoral/genética , Transducción de Señal/efectos de los fármacos , Factor de Necrosis Tumoral alfa/metabolismo
12.
J Orthop Res ; 38(3): 629-638, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31692083

RESUMEN

Joint stiffness due to fibrosis/capsule contracture is a seriously disabling complication of articular injury that surgical interventions often fail to completely resolve. Fibrosis/contracture is associated with the abnormal persistence of myofibroblasts, which over-produce and contract collagen matrices. We hypothesized that intra-articular therapy with drugs targeting myofibroblast survival (sulfasalazine), or collagen production (ß-aminopropionitrile and cis-hydroxyproline), would reduce joint stiffness in a rabbit model of fibrosis/contracture. Drugs were encapsulated in poly[lactic-co-glycolic] acid pellets and implanted in joints after fibrosis/contracture induction. Capsule α-smooth muscle actin (α-SMA) expression and intimal thickness were evaluated by immunohistochemistry and histomorphometry, respectively. Joint stiffness was quantified by flexion-extension testing. Drawer tests were employed to determine if the drugs induced cruciate ligament laxity. Joint capsule fibroblasts were tested in vitro for contractile activity and α-SMA expression. Stiffness in immobilized joints treated with blank pellets (control) was significantly higher than in non-immobilized, untreated joints (normal) (p = 0.0008), and higher than in immobilized joints treated with sulfasalazine (p = 0.0065). None of the drugs caused significant cruciate ligament laxity. Intimal thickness was significantly lower than control in the normal and sulfasalazine-treated groups (p = 0.010 and 0.025, respectively). Contractile activity in the cells from controls was significantly increased versus normal (p = 0.001). Sulfasalazine and ß-aminopropionitrile significantly inhibited this effect (p = 0.005 and 0.0006, respectively). α-SMA expression was significantly higher in control versus normal (p = 0.0021) and versus sulfasalazine (p = 0.0007). These findings support the conclusion that sulfasalazine reduced stiffness by clearing myofibroblasts from fibrotic joints. Statement of clinical significance: The results provide proof-of-concept that established joint stiffness can be resolved non-surgically. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 38:629-638, 2020.


Asunto(s)
Artropatías/tratamiento farmacológico , Artropatías/patología , Sulfasalazina/farmacología , Aminopropionitrilo/química , Animales , Colágeno/química , Contractura/patología , Modelos Animales de Enfermedad , Fibrosis , Hidroxiprolina/química , Cápsula Articular/patología , Masculino , Contracción Muscular , Miofibroblastos/fisiología , Conejos , Estrés Mecánico
13.
Surv Ophthalmol ; 65(2): 218-226, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31775013

RESUMEN

Giant cell arteritis is the most common systemic vasculitis in the elderly and is a potentially life-threatening ophthalmic emergency that can result in irreversible blindness. Blindness is most commonly associated with acute onset, irreversible arteritic ischemic optic neuropathy. Without treatment, second eye involvement may occur, resulting in bilateral blindness. Patients with established visual loss are treated with high-dose steroids and generally undergo a temporal artery biopsy to confirm their diagnosis. A significant number of patients are, however, referred for urgent ophthalmology assessment from concerns about "incipient" arteritic ischemic optic neuropathy. Before visual loss, patients may experience a range of ocular symptoms related to ischemia. This generally leads to treatment with high-dose systemic steroid and an urgent request for a temporal artery biopsy. Temporal artery biopsy is considered as the standard investigation for confirmatory diagnosis. It is generally arranged as soon as possible, although it is often not carried out for several days, and there may also be delays in histopathological reporting. It is often perceived that the patient is "safe" while on corticosteroids, in that they are being treated to avoid visual loss. What is not acknowledged, however, is that, if patients do not have giant cell arteritis and are being treated "just in case," they will often require a tapering of oral steroids over several weeks, exposing them to unnecessary and significant side effects. In the rheumatology setting, vascular ultrasound has emerged as a safe and reliable alternative to temporal artery biopsy as a point of care diagnostic tool in the management of giant cell arteritis. Given an experienced sonographer and optimal equipment, a rapid diagnosis can be established in a fast-track clinic setting, taking into consideration clinical assessment, scoring, and ultrasound findings. A huge advantage of ultrasound is that it provides immediate information that can be used to inform treatment decisions. We explore the evidence that supports the incorporation of vascular ultrasound into the ophthalmology repertoire to make a more efficient diagnosis that is cost-effective and associated with better patient outcomes, including a potential reduction in loss of sight and avoidance of unnecessary long-term steroid treatment by early exclusion of mimics.


Asunto(s)
Arteritis de Células Gigantes/diagnóstico , Oftalmología/métodos , Arterias Temporales/diagnóstico por imagen , Ultrasonografía/métodos , Humanos , Reproducibilidad de los Resultados
14.
J Orthop Res ; 36(9): 2439-2449, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29667227

RESUMEN

Our group employed the mouse closed intra-articular fracture (IAF) model to test the hypothesis that the innate immune system plays a role in initiating synovitis and post-traumatic osteoarthritis (PTOA) in fractured joints. A transgenic strategy featuring knockout of the receptor for advanced glycation end-products (RAGE -/- ) was pursued. The 42 and 84 mJ impacts used to create fractures were in the range previously reported to cause PTOA at 60 days post-fracture. MicroCT (µCT) was used to assess fracture patterns and epiphyseal and metaphyseal bone loss at 30 and 60 days post-fracture. Cartilage degeneration, synovitis, and matrix metalloproteinase (MMP-3, -13) expression were evaluated by histologic analyses. In wild-type mice, µCT imaging showed that 84 mJ impacts led to significant bone loss at 30 days (p < 0.05), but recovered to normal at 60 days. Bone losses did not occur in RAGE-/- mice. Synovitis was significantly elevated in 84 mJ impact wild-type mice at both endpoints (30 day, p = 0.001; 60 day, p = 0.05), whereas in RAGE-/- mice synovitis was elevated only at 30 days (p = 0.02). Mankin scores were slightly elevated in both mouse strains at 30 days, but not at 60 days. Immunohistochemistry revealed significant fracture-related increases in MMP-3 and -13 expression at 30 days (p < 0.05), with no significant difference between genotypes. These findings indicated that while RAGE -/- accelerated recovery from fracture and diminished synovitis, arthritic changes were temporary and too modest to detect an effect on the pathogenesis of PTOA. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:2439-2449, 2018.


Asunto(s)
Densidad Ósea , Receptor para Productos Finales de Glicación Avanzada/genética , Sinovitis/metabolismo , Fracturas de la Tibia/patología , Animales , Cartílago Articular/patología , Modelos Animales de Enfermedad , Fracturas Intraarticulares , Masculino , Metaloproteinasa 13 de la Matriz/metabolismo , Metaloproteinasa 3 de la Matriz/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Osteoartritis/metabolismo , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Microtomografía por Rayos X
15.
J Immunol ; 194(9): 4319-27, 2015 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-25795759

RESUMEN

Blocking the interaction of CD40 with its ligand CD154 is a desirable goal of therapies for preventing and/or ameliorating autoimmune diseases and transplant rejection. CD154-blocking mAbs used in human clinical trials resulted in unanticipated vascular complications, leading to heightened interest in the therapeutic potential of antagonist mAbs specific for human CD40. Abs that do not require physical competition with CD154 to inhibit CD40 signaling have particular therapeutic promise. In this study, we demonstrate that the antagonist anti-human CD40 mAb PG102 fails to trigger CD40-mediated activation, as well as impairs CD154-mediated CD40 activation, via a distinct nonstimulatory CD40 signaling mechanism. PG102 did not induce early CD40-induced signaling events, and it inhibited early kinase and transcription factor activation by CD154 or agonist anti-CD40 mAbs. However, PG102 stimulated normal CD40-mediated TNFR-associated factor (TRAF)2 and TRAF3 degradation. PG102 induced the formation of a CD40 signaling complex that contained decreased amounts of both TRAF2 and TRAF3 and TRAF2-associated signaling proteins. Additionally, PG102-induced CD40 signaling complexes failed to recruit TRAF6 to detergent-insoluble membrane fractions. Fab fragments of PG102, while retaining CD40 binding, did not induce TRAF degradation, nor could they inhibit CD154-stimulated B cell signaling, indicating that CD40 aggregation is required for the signaling inhibition induced by PG102. The antagonistic impact of PG102 on CD40 signaling reveals that the manner of CD40 ligation can determine sharply different outcomes for CD40 signaling and suggests that such information can be used to therapeutically manipulate these outcomes.


Asunto(s)
Anticuerpos Monoclonales/metabolismo , Antígenos CD40/metabolismo , Transducción de Señal , Anticuerpos Monoclonales/farmacología , Linfocitos B/inmunología , Linfocitos B/metabolismo , Antígenos CD40/antagonistas & inhibidores , Ligando de CD40/metabolismo , Línea Celular , Humanos , Activación de Linfocitos/inmunología , Unión Proteica , Proteolisis , Transducción de Señal/efectos de los fármacos , Péptidos y Proteínas Asociados a Receptores de Factores de Necrosis Tumoral/metabolismo
16.
Ann Rheum Dis ; 74(7): 1467-73, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24641944

RESUMEN

OBJECTIVES: Chondrocytes, the only cells in the articular cartilage, play a pivotal role in osteoarthritis (OA) because they are responsible for maintenance of the extracellular matrix (ECM). Follistatin-like protein 1 (FSTL1) is a secreted protein found in mesenchymal stem cells (MSCs) and cartilage but whose function is unclear. FSTL1 has been shown to modify cell growth and survival. In this work, we sought to determine whether FSTL1 could regulate chondrogenesis and chondrogenic differentiation of MSCs. METHODS: To study the role of FSTL1 in chondrogenesis, we used FSTL1 knockout (KO) mice generated in our laboratory. Proliferative capacity of MSCs, obtained from skulls of E18.5 embryos, was analysed by flow cytometry. Chondrogenic differentiation of MSCs was carried out in a pellet culture system. Gene expression differences were assessed by microarray analysis and real-time PCR. Phosphorylation of Smad3, p38 MAPK and Akt was analysed by western blotting. RESULTS: The homozygous FSTL1 KO embryos showed extensive skeletal defects and decreased cellularity in the vertebral cartilage. Cell proliferation of FSTL1-deficient MSCs was reduced. Gene expression analysis in FSTL1 KO MSCs revealed dysregulation of multiple genes important for chondrogenesis. Production of ECM proteoglycans and collagen II expression were decreased in FSTL1-deficient MSCs differentiated into chondrocytes. Transforming growth factor ß signalling in FSTL1 KO cells was significantly suppressed. CONCLUSIONS: FSTL1 is a potent regulator of chondrocyte proliferation, differentiation and expression of ECM molecules. Our findings may lead to the development of novel strategies for cartilage repair and provide new disease-modifying treatments for OA.


Asunto(s)
Diferenciación Celular/fisiología , Proliferación Celular/fisiología , Condrocitos/citología , Condrogénesis/fisiología , Proteínas Relacionadas con la Folistatina/fisiología , Células Madre Mesenquimatosas/citología , Animales , Células Cultivadas , Condrocitos/efectos de los fármacos , Condrocitos/fisiología , Colágeno Tipo II/metabolismo , Matriz Extracelular/metabolismo , Proteínas Relacionadas con la Folistatina/deficiencia , Proteínas Relacionadas con la Folistatina/genética , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/fisiología , Ratones , Ratones Noqueados , Modelos Animales , Proteoglicanos/metabolismo , Transducción de Señal/efectos de los fármacos , Factor de Crecimiento Transformador beta/farmacología
17.
Pediatr Dev Pathol ; 17(5): 339-43, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25076388

RESUMEN

We confirmed the added value provided by sampling D1 in the diagnosis of CD in comparison to the diagnosis yield when only the more distal duodenum (D2, D3, and/or D4) was sampled. The severity of CD, as assessed by the Marsh-Oberhuber classification, did not increase distally; on the contrary, in 39/60 (65%) of the cohort, the features of CD were either more severe or only present in D1.


Asunto(s)
Enfermedad Celíaca/patología , Duodeno/patología , Mucosa Intestinal/patología , Adolescente , Atrofia , Biopsia , Enfermedad Celíaca/clasificación , Niño , Preescolar , Femenino , Humanos , Lactante , Masculino
18.
Immunol Res ; 59(1-3): 266-72, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24838142

RESUMEN

Follistatin-like protein 1 (FSTL1) is a secreted glycoprotein produced mainly by cells of mesenchymal origin. FSTL1 has been shown to play an important role during embryogenesis; FSTL1-deficient mice die at birth from multiple developmental abnormalities. In the last decade, FSTL1 has been identified as a novel inflammatory protein, enhancing synthesis of proinflammatory cytokines and chemokines by immune cells in vitro and in vivo. FSTL1 mediates proinflammatory events in animal models of inflammatory diseases, particularly in collagen-induced arthritis in mice. FSTL1 is elevated in various inflammatory conditions and decreased during the course of treatment. FSTL1 may therefore be a valuable biomarker for such diseases. Moreover, a variety of experiments suggest that targeting of FSTL1 may be useful in the treatment of diseases in which inflammation plays a central role.


Asunto(s)
Artritis Experimental/inmunología , Proteínas Relacionadas con la Folistatina/inmunología , Animales , Artritis Experimental/genética , Artritis Experimental/patología , Artritis Experimental/terapia , Biomarcadores , Quimiocinas/genética , Quimiocinas/inmunología , Proteínas Relacionadas con la Folistatina/genética , Humanos , Inflamación/genética , Inflamación/inmunología , Inflamación/patología , Ratones , Ratones Mutantes , Retratos como Asunto
19.
J Leukoc Biol ; 90(6): 1149-57, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21971520

RESUMEN

The key role of TRAF6 in TLR signaling pathways is well known. More recent evidence has implicated TRAF3 as another TRAF family member important to certain TLR responses of myeloid cells. Previous studies demonstrate that TRAF3 functions are highly context-dependent, displaying receptor and cell-type specificity. We thus examined the TLR responses of TRAF3(-/-)mouse B lymphocytes to test the hypothesis that TRAF3 plays distinct roles in such responses, depending on cell type. TRAF3(-/-) DC are known to have a defect in type 1 IFN production and here, showed diminished production of TNF and IL-10 and unaltered IL-6. In marked contrast, TRAF3(-/-) B cells made elevated amounts of TNF and IL-6 protein, as well as IL-10 and IP-10 mRNA, in response to TLR ligands. Also, in contrast to TRAF3(-/-) DC, the type 1 IFN pathway was elevated in TRAF3(-/-) B cells. Increased early responses of TRAF3(-/-) B cells to TLR signals were independent of cell survival or proliferation but associated with elevated canonical NF-κB activation. Additionally, TRAF3(-/-) B cells displayed enhanced TLR-mediated expression of AID and Ig isotype switching. Thus, TRAF3 plays varied and cell type-specific, biological roles in TLR responses.


Asunto(s)
Subgrupos de Linfocitos B/inmunología , Subgrupos de Linfocitos B/metabolismo , Factor 3 Asociado a Receptor de TNF/deficiencia , Factor 3 Asociado a Receptor de TNF/fisiología , Receptores Toll-Like/biosíntesis , Animales , Subgrupos de Linfocitos B/citología , Células Cultivadas , Activación de Linfocitos/genética , Activación de Linfocitos/inmunología , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Transducción de Señal/genética , Transducción de Señal/inmunología
20.
Biol Lett ; 6(4): 458-61, 2010 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-20164080

RESUMEN

Many studies have focused on the effects of anthropogenic noise on animal communication, but only a few have looked at its effect on other behavioural systems. We designed a playback experiment to test the effect of noise on predation risk assessment. We found that in response to boat motor playback, Caribbean hermit crabs (Coenobita clypeatus) allowed a simulated predator to approach closer before they hid. Two hypotheses may explain how boat noise affected risk assessment: it masked an approaching predator's sound; and/or it reallocated some of the crabs' finite attention, effectively distracting them, and thus preventing them from responding to an approaching threat. We found no support for the first hypothesis: a silent looming object still got closer during boat motor playbacks than during silence. However, we found support for the attentional hypothesis: when we added flashing lights to the boat motor noise to further distract the hermit crabs, we were able to approach the crabs more closely than with the noise alone. Anthropogenic sounds may thus distract prey and make them more vulnerable to predation.


Asunto(s)
Anomuros/fisiología , Atención , Conducta Animal/fisiología , Reacción de Fuga/fisiología , Ruido/efectos adversos , Estimulación Acústica , Animales , Actividades Humanas , Humanos , Riesgo , Islas Virgenes de los Estados Unidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...