Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
PLoS Genet ; 19(12): e1011103, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38127821

RESUMEN

Some animals respond to injury by inducing new growth to regenerate the lost structures. This regenerative growth must be carefully controlled and constrained to prevent aberrant growth and to allow correct organization of the regenerating tissue. However, the factors that restrict regenerative growth have not been identified. Using a genetic ablation system in the Drosophila wing imaginal disc, we have identified one mechanism that constrains regenerative growth, impairment of which also leads to erroneous patterning of the final appendage. Regenerating discs with reduced levels of the RNA-regulator Brain tumor (Brat) exhibit enhanced regeneration, but produce adult wings with disrupted margins that are missing extensive tracts of sensory bristles. In these mutants, aberrantly high expression of the pro-growth factor Myc and its downstream targets likely contributes to this loss of cell-fate specification. Thus, Brat constrains the expression of pro-regeneration genes and ensures that the regenerating tissue forms the proper final structure.


Asunto(s)
Proteínas de Drosophila , Regeneración , Animales , Drosophila/genética , Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Discos Imaginales/metabolismo , Regeneración/genética , Alas de Animales , Proteínas de Unión al ADN/genética
2.
Genetics ; 217(1): 1-16, 2021 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-33683366

RESUMEN

To regenerate, damaged tissue must heal the wound, regrow to the proper size, replace the correct cell types, and return to the normal gene-expression program. However, the mechanisms that temporally and spatially control the activation or repression of important genes during regeneration are not fully understood. To determine the role that chromatin modifiers play in regulating gene expression after tissue damage, we induced ablation in Drosophila melanogaster imaginal wing discs, and screened for chromatin regulators that are required for epithelial tissue regeneration. Here, we show that many of these genes are indeed important for promoting or constraining regeneration. Specifically, the two SWI/SNF chromatin-remodeling complexes play distinct roles in regulating different aspects of regeneration. The PBAP complex regulates regenerative growth and developmental timing, and is required for the expression of JNK signaling targets and the growth promoter Myc. By contrast, the BAP complex ensures correct patterning and cell fate by stabilizing the expression of the posterior gene engrailed. Thus, both SWI/SNF complexes are essential for proper gene expression during tissue regeneration, but they play distinct roles in regulating growth and cell fate.


Asunto(s)
Diferenciación Celular , Ensamble y Desensamble de Cromatina , Proteínas Cromosómicas no Histona/metabolismo , Regulación del Desarrollo de la Expresión Génica , Regeneración , Factores de Transcripción/metabolismo , Animales , Proteínas Cromosómicas no Histona/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Discos Imaginales/citología , Discos Imaginales/metabolismo , MAP Quinasa Quinasa 4/metabolismo , Factores de Transcripción/genética
3.
Sci Rep ; 8(1): 4950, 2018 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-29563503

RESUMEN

The imaginal discs of the genetically tractable model organism Drosophila melanogaster have been used to study cell-fate specification and plasticity, including homeotic changes and regeneration-induced transdetermination. The identity of the reprogramming mechanisms that induce plasticity has been of great interest in the field. Here we identify a change from antennal fate to eye fate induced by a Distal-less-GAL4 (DllGAL4) P-element insertion that is a mutant allele of Dll and expresses GAL4 in the antennal imaginal disc. While this fate change is not induced by tissue damage, it appears to be a hybrid of transdetermination and homeosis as the GAL4 expression causes upregulation of Wingless, and the Dll mutation is required for the fate change. Neither GAL4 expression nor a Dll mutation on its own is able to induce antenna-to-eye fate changes. This plasticity appears to be unique to the DllGAL4 line, possibly due to cellular stress induced by the high GAL4 expression combined with the severity of the Dll mutation. Thus, we propose that even in the absence of tissue damage, other forms of cellular stress caused by high GAL4 expression can induce determined cell fates to change, and selector gene mutations can sensitize the tissue to these transformations.


Asunto(s)
Antenas de Artrópodos/crecimiento & desarrollo , Drosophila melanogaster/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/fisiología , Discos Imaginales/crecimiento & desarrollo , Factores de Transcripción/fisiología , Animales , Animales Modificados Genéticamente/genética , Animales Modificados Genéticamente/crecimiento & desarrollo , Antenas de Artrópodos/citología , Plasticidad de la Célula/genética , Proteínas de Unión al ADN/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Elementos de Facilitación Genéticos/genética , Femenino , Discos Imaginales/citología , Masculino , Mutación , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/genética , Transgenes/genética , Regulación hacia Arriba , Proteína Wnt1/metabolismo
4.
PLoS Genet ; 13(7): e1006937, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28753614

RESUMEN

Regenerating tissue must initiate the signaling that drives regenerative growth, and sustain that signaling long enough for regeneration to complete. How these key signals are sustained is unclear. To gain a comprehensive view of the changes in gene expression that occur during regeneration, we performed whole-genome mRNAseq of actively regenerating tissue from damaged Drosophila wing imaginal discs. We used genetic tools to ablate the wing primordium to induce regeneration, and carried out transcriptional profiling of the regeneration blastema by fluorescently labeling and sorting the blastema cells, thus identifying differentially expressed genes. Importantly, by using genetic mutants of several of these differentially expressed genes we have confirmed that they have roles in regeneration. Using this approach, we show that high expression of the gene moladietz (mol), which encodes the Duox-maturation factor NIP, is required during regeneration to produce reactive oxygen species (ROS), which in turn sustain JNK signaling during regeneration. We also show that JNK signaling upregulates mol expression, thereby activating a positive feedback signal that ensures the prolonged JNK activation required for regenerative growth. Thus, by whole-genome transcriptional profiling of regenerating tissue we have identified a positive feedback loop that regulates the extent of regenerative growth.


Asunto(s)
Proteínas Portadoras/biosíntesis , Proteínas de Drosophila/biosíntesis , Discos Imaginales/crecimiento & desarrollo , MAP Quinasa Quinasa 4/genética , Regeneración/genética , Animales , Tipificación del Cuerpo/genética , Proteínas Portadoras/genética , Proliferación Celular/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Sistema de Señalización de MAP Quinasas/genética , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/genética , Alas de Animales/crecimiento & desarrollo
5.
Genetics ; 206(3): 1505-1520, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28512185

RESUMEN

Regeneration is a complex process that requires an organism to recognize and repair tissue damage, as well as grow and pattern new tissue. Here, we describe a genetic screen to identify novel regulators of regeneration. We ablated the Drosophila melanogaster larval wing primordium by inducing apoptosis in a spatially and temporally controlled manner and allowed the tissue to regenerate and repattern. To identify genes that regulate regeneration, we carried out a dominant-modifier screen by assessing the amount and quality of regeneration in adult wings heterozygous for isogenic deficiencies. We have identified 31 regions on the right arm of the third chromosome that modify the regenerative response. Interestingly, we observed several distinct phenotypes: mutants that regenerated poorly, mutants that regenerated faster or better than wild-type, and mutants that regenerated imperfectly and had patterning defects. We mapped one deficiency region to cap-n-collar (cnc), the Drosophila Nrf2 ortholog, which is required for regeneration. Cnc regulates reactive oxygen species levels in the regenerating epithelium, and affects c-Jun N-terminal protein kinase (JNK) signaling, growth, debris localization, and pupariation timing. Here, we present the results of our screen and propose a model wherein Cnc regulates regeneration by maintaining an optimal level of reactive oxygen species to promote JNK signaling.


Asunto(s)
Proteínas de Drosophila/metabolismo , Discos Imaginales/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Regeneración , Proteínas Represoras/metabolismo , Animales , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/metabolismo , Discos Imaginales/fisiología , MAP Quinasa Quinasa 4/metabolismo , Sistema de Señalización de MAP Quinasas , Proteínas Represoras/genética , Alas de Animales/crecimiento & desarrollo , Alas de Animales/metabolismo
6.
Fly (Austin) ; 10(2): 73-80, 2016 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-27057746

RESUMEN

Dissociation of imaginal disc cells has been carried out previously to enable flow cytometry and cell sorting to analyze cell cycle progression, cell size, gene expression, and other aspects of imaginal tissues. However, the lengthy dissociation protocols employed may alter gene expression, cell behavior and overall viability. Here we describe a new rapid and gentle method of dissociating the cells of wing imaginal discs that significantly enhances cell viability and reduces the likelihood of gene expression changes. Furthermore, this method is scalable, enabling collection of large amounts of sample for high-throughput experiments without the need for data-distorting amplifications.


Asunto(s)
Citometría de Flujo/métodos , Discos Imaginales/citología , Animales , Perfilación de la Expresión Génica , ARN Mensajero/genética , Análisis de Secuencia de ARN
7.
Development ; 142(20): 3500-11, 2015 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-26487779

RESUMEN

Although tissue regeneration has been studied in a variety of organisms, from Hydra to humans, many of the genes that regulate the ability of each animal to regenerate remain unknown. The larval imaginal discs of the genetically tractable model organism Drosophila melanogaster have complex patterning, well-characterized development and a high regenerative capacity, and are thus an excellent model system for studying mechanisms that regulate regeneration. To identify genes that are important for wound healing and tissue repair, we have carried out a genetic screen for mutations that impair regeneration in the wing imaginal disc. Through this screen we identified the chromatin-modification gene trithorax as a key regeneration gene. Here we show that animals heterozygous for trithorax are unable to maintain activation of a developmental checkpoint that allows regeneration to occur. This defect is likely to be caused by abnormally high expression of puckered, a negative regulator of Jun N-terminal kinase (JNK) signaling, at the wound site. Insufficient JNK signaling leads to insufficient expression of an insulin-like peptide, dILP8, which is required for the developmental checkpoint. Thus, trithorax regulates regeneration signaling and capacity.


Asunto(s)
Proteínas Cromosómicas no Histona/fisiología , Proteínas de Drosophila/fisiología , Drosophila melanogaster/crecimiento & desarrollo , Regulación de la Expresión Génica , Discos Imaginales/fisiología , Regeneración , Alas de Animales/fisiología , Animales , Tipificación del Cuerpo , Ecdisona/química , Epigénesis Genética , Femenino , Heterocigoto , Histonas/química , Péptidos y Proteínas de Señalización Intercelular/fisiología , Masculino , Mutación , Fosfoproteínas Fosfatasas/fisiología , Estructura Terciaria de Proteína , Transducción de Señal
8.
Dev Cell ; 34(1): 119-28, 2015 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-26096735

RESUMEN

Regenerating tissue must replace lost structures with cells of the proper identity and function. How regenerating tissue establishes or maintains correct cell fates during regrowth is an open question. We have identified a gene, taranis, that is essential for maintaining proper cell fate in damaged and regenerating Drosophila wing imaginal discs but that is dispensable for these fates in normal wing development. In regenerating tissue with reduced levels of Taranis, expression of the posterior selector gene engrailed is silenced through an autoregulatory silencing mechanism that requires the PRC1 component polyhomeotic, resulting in a transformation of posterior tissue into anterior tissue late in regeneration. An essential component of the wound response, JNK signaling, induces this misregulation of engrailed expression. Taranis can suppress these JNK-induced cell fate changes without interfering with JNK signaling activity. Thus, taranis protects regenerating tissue from deleterious side effects of wound healing and regeneration.


Asunto(s)
Drosophila melanogaster/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología , Regeneración/fisiología , Alas de Animales/metabolismo , Cicatrización de Heridas/fisiología , Animales , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Regulación del Desarrollo de la Expresión Génica/fisiología , Complejo Represivo Polycomb 1/metabolismo , Cicatrización de Heridas/genética
9.
Dev Cell ; 16(6): 797-809, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19531351

RESUMEN

The study of regeneration would be aided greatly by systems that support large-scale genetic screens. Here we describe a nonsurgical method for inducing tissue damage and regeneration in Drosophila larvae by inducing apoptosis in the wing imaginal disc in a spatially and temporally regulated manner. Tissue damage results in localized regenerative proliferation characterized by altered expression of patterning genes and growth regulators as well as a temporary loss of markers of cell fate commitment. Wingless and Myc are induced by tissue damage and are important for regenerative growth. Furthermore, ectopic Myc enhances regeneration when other growth drivers tested do not. As the animal matures, the ability to regenerate is lost and cannot be restored by activation of Wingless or Myc. This system is conducive to forward genetic screens, enabling an unbiased search for genes that regulate both the extent of and the capacity for regeneration.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crecimiento & desarrollo , Regeneración , Factores de Transcripción/metabolismo , Alas de Animales/crecimiento & desarrollo , Proteína Wnt1/metabolismo , Animales , Tipificación del Cuerpo , Linaje de la Célula , Proliferación Celular , Ciclina E/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Genes de Insecto , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Larva/citología , Larva/crecimiento & desarrollo , Mutación/genética , Regulación hacia Arriba/genética , Alas de Animales/citología , Alas de Animales/metabolismo
10.
Development ; 133(6): 1133-42, 2006 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16481357

RESUMEN

Drosophila Corkscrew protein and its vertebrate ortholog SHP-2 (now known as Ptpn11) positively modulate receptor tyrosine kinase (RTK) signaling during development, but how these tyrosine phosphatases promote tyrosine kinase signaling is not well understood. Sprouty proteins are tyrosine-phosphorylated RTK feedback inhibitors, but their regulation and mechanism of action are also poorly understood. Here, we show that Corkscrew/SHP-2 proteins control Sprouty phosphorylation and function. Genetic experiments demonstrate that Corkscrew/SHP-2 and Sprouty proteins have opposite effects on RTK-mediated developmental events in Drosophila and an RTK signaling process in cultured mammalian cells, and the genes display dose-sensitive genetic interactions. In cultured cells, inactivation of SHP-2 increases phosphorylation on the critical tyrosine of Sprouty 1. SHP-2 associates in a complex with Sprouty 1 in cultured cells and in vitro, and a purified SHP-2 protein dephosphorylates the critical tyrosine of Sprouty 1. Substrate-trapping forms of Corkscrew bind Sprouty in cultured Drosophila cells and the developing eye. These results identify Sprouty proteins as in vivo targets of Corkscrew/SHP-2 tyrosine phosphatases and show how Corkscrew/SHP-2 proteins can promote RTK signaling by inactivating a feedback inhibitor. We propose that this double-negative feedback circuit shapes the output profile of RTK signaling events.


Asunto(s)
Proteínas de Drosophila/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Tirosina Fosfatasas/metabolismo , Animales , Línea Celular , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/metabolismo , Regulación del Desarrollo de la Expresión Génica , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas de la Membrana/genética , Fosfotirosina/metabolismo , Unión Proteica , Proteína Tirosina Fosfatasa no Receptora Tipo 11 , Proteínas Tirosina Fosfatasas/genética , Proteínas Tirosina Fosfatasas no Receptoras , Proteínas Tirosina Quinasas/metabolismo , Transducción de Señal , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA