Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 692, 2023 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-36754966

RESUMEN

Huntington's disease (HD) is caused by an expanded CAG repeat in the huntingtin gene, yielding a Huntingtin protein with an expanded polyglutamine tract. While experiments with patient-derived induced pluripotent stem cells (iPSCs) can help understand disease, defining pathological biomarkers remains challenging. Here, we used cryogenic electron tomography to visualize neurites in HD patient iPSC-derived neurons with varying CAG repeats, and primary cortical neurons from BACHD, deltaN17-BACHD, and wild-type mice. In HD models, we discovered sheet aggregates in double membrane-bound organelles, and mitochondria with distorted cristae and enlarged granules, likely mitochondrial RNA granules. We used artificial intelligence to quantify mitochondrial granules, and proteomics experiments reveal differential protein content in isolated HD mitochondria. Knockdown of Protein Inhibitor of Activated STAT1 ameliorated aberrant phenotypes in iPSC- and BACHD neurons. We show that integrated ultrastructural and proteomic approaches may uncover early HD phenotypes to accelerate diagnostics and the development of targeted therapeutics for HD.


Asunto(s)
Enfermedad de Huntington , Células Madre Pluripotentes Inducidas , Animales , Ratones , Inteligencia Artificial , Modelos Animales de Enfermedad , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Enfermedad de Huntington/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Mitocondrias/metabolismo , Neuronas/metabolismo , Fenotipo , Proteómica , Humanos
2.
Nat Neurosci ; 26(1): 27-38, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36510111

RESUMEN

Huntington's disease (HD) is a fatal, dominantly inherited neurodegenerative disorder caused by CAG trinucleotide expansion in exon 1 of the huntingtin (HTT) gene. Since the reduction of pathogenic mutant HTT messenger RNA is therapeutic, we developed a mutant allele-sensitive CAGEX RNA-targeting CRISPR-Cas13d system (Cas13d-CAGEX) that eliminates toxic CAGEX RNA in fibroblasts derived from patients with HD and induced pluripotent stem cell-derived neurons. We show that intrastriatal delivery of Cas13d-CAGEX via an adeno-associated viral vector selectively reduces mutant HTT mRNA and protein levels in the striatum of heterozygous zQ175 mice, a model of HD. This also led to improved motor coordination, attenuated striatal atrophy and reduction of mutant HTT protein aggregates. These phenotypic improvements lasted for at least eight months without adverse effects and with minimal off-target transcriptomic effects. Taken together, we demonstrate proof of principle of an RNA-targeting CRISPR-Cas13d system as a therapeutic approach for HD, a strategy with implications for the treatment of other dominantly inherited disorders.


Asunto(s)
Enfermedad de Huntington , Ratones , Animales , Enfermedad de Huntington/genética , Enfermedad de Huntington/terapia , Enfermedad de Huntington/metabolismo , ARN , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Cuerpo Estriado/metabolismo , ARN Mensajero/metabolismo , Fenotipo , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Modelos Animales de Enfermedad
3.
J Virol ; 96(4): e0196921, 2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-34935438

RESUMEN

Unlike SARS-CoV-1 and MERS-CoV, infection with SARS-CoV-2, the viral pathogen responsible for COVID-19, is often associated with neurologic symptoms that range from mild to severe, yet increasing evidence argues the virus does not exhibit extensive neuroinvasive properties. We demonstrate SARS-CoV-2 can infect and replicate in human iPSC-derived neurons and that infection shows limited antiviral and inflammatory responses but increased activation of EIF2 signaling following infection as determined by RNA sequencing. Intranasal infection of K18 human ACE2 transgenic mice (K18-hACE2) with SARS-CoV-2 resulted in lung pathology associated with viral replication and immune cell infiltration. In addition, ∼50% of infected mice exhibited CNS infection characterized by wide-spread viral replication in neurons accompanied by increased expression of chemokine (Cxcl9, Cxcl10, Ccl2, Ccl5 and Ccl19) and cytokine (Ifn-λ and Tnf-α) transcripts associated with microgliosis and a neuroinflammatory response consisting primarily of monocytes/macrophages. Microglia depletion via administration of colony-stimulating factor 1 receptor inhibitor, PLX5622, in SARS-CoV-2 infected mice did not affect survival or viral replication but did result in dampened expression of proinflammatory cytokine/chemokine transcripts and a reduction in monocyte/macrophage infiltration. These results argue that microglia are dispensable in terms of controlling SARS-CoV-2 replication in in the K18-hACE2 model but do contribute to an inflammatory response through expression of pro-inflammatory genes. Collectively, these findings contribute to previous work demonstrating the ability of SARS-CoV-2 to infect neurons as well as emphasizing the potential use of the K18-hACE2 model to study immunological and neuropathological aspects related to SARS-CoV-2-induced neurologic disease. IMPORTANCE Understanding the immunological mechanisms contributing to both host defense and disease following viral infection of the CNS is of critical importance given the increasing number of viruses that are capable of infecting and replicating within the nervous system. With this in mind, the present study was undertaken to evaluate the role of microglia in aiding in host defense following experimental infection of the central nervous system (CNS) of K18-hACE2 with SARS-CoV-2, the causative agent of COVID-19. Neurologic symptoms that range in severity are common in COVID-19 patients and understanding immune responses that contribute to restricting neurologic disease can provide important insight into better understanding consequences associated with SARS-CoV-2 infection of the CNS.


Asunto(s)
Enzima Convertidora de Angiotensina 2/inmunología , COVID-19/inmunología , Enfermedades Virales del Sistema Nervioso Central/inmunología , Microglía/inmunología , SARS-CoV-2/fisiología , Replicación Viral/inmunología , Enzima Convertidora de Angiotensina 2/genética , Animales , COVID-19/genética , Sistema Nervioso Central/inmunología , Sistema Nervioso Central/virología , Enfermedades Virales del Sistema Nervioso Central/genética , Enfermedades Virales del Sistema Nervioso Central/virología , Quimiocinas/genética , Quimiocinas/inmunología , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones Transgénicos , Microglía/virología , Neuronas/inmunología , Neuronas/virología , Replicación Viral/genética
4.
bioRxiv ; 2021 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-34816260

RESUMEN

Unlike SARS-CoV-1 and MERS-CoV, infection with SARS-CoV-2, the viral pathogen responsible for COVID-19, is often associated with neurologic symptoms that range from mild to severe, yet increasing evidence argues the virus does not exhibit extensive neuroinvasive properties. We demonstrate SARS-CoV-2 can infect and replicate in human iPSC-derived neurons and that infection shows limited anti-viral and inflammatory responses but increased activation of EIF2 signaling following infection as determined by RNA sequencing. Intranasal infection of K18 human ACE2 transgenic mice (K18-hACE2) with SARS-CoV-2 resulted in lung pathology associated with viral replication and immune cell infiltration. In addition, ∼50% of infected mice exhibited CNS infection characterized by wide-spread viral replication in neurons accompanied by increased expression of chemokine ( Cxcl9, Cxcl10, Ccl2, Ccl5 and Ccl19 ) and cytokine ( Ifn-λ and Tnf-α ) transcripts associated with microgliosis and a neuroinflammatory response consisting primarily of monocytes/macrophages. Microglia depletion via administration of colony-stimulating factor 1 receptor inhibitor, PLX5622, in SARS-CoV-2 infected mice did not affect survival or viral replication but did result in dampened expression of proinflammatory cytokine/chemokine transcripts and a reduction in monocyte/macrophage infiltration. These results argue that microglia are dispensable in terms of controlling SARS-CoV-2 replication in in the K18-hACE2 model but do contribute to an inflammatory response through expression of pro-inflammatory genes. Collectively, these findings contribute to previous work demonstrating the ability of SARS-CoV-2 to infect neurons as well as emphasizing the potential use of the K18-hACE2 model to study immunological and neuropathological aspects related to SARS-CoV-2-induced neurologic disease. IMPORTANCE: Understanding the immunological mechanisms contributing to both host defense and disease following viral infection of the CNS is of critical importance given the increasing number of viruses that are capable of infecting and replicating within the nervous system. With this in mind, the present study was undertaken to evaluate the role of microglia in aiding in host defense following experimental infection of the central nervous system (CNS) of K18-hACE2 with SARS-CoV-2, the causative agent of COVID-19. Neurologic symptoms that range in severity are common in COVID-19 patients and understanding immune responses that contribute to restricting neurologic disease can provide important insight into better understanding consequences associated with SARS-CoV-2 infection of the CNS.

5.
Proc Natl Acad Sci U S A ; 118(4)2021 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-33468657

RESUMEN

DNA damage repair genes are modifiers of disease onset in Huntington's disease (HD), but how this process intersects with associated disease pathways remains unclear. Here we evaluated the mechanistic contributions of protein inhibitor of activated STAT-1 (PIAS1) in HD mice and HD patient-derived induced pluripotent stem cells (iPSCs) and find a link between PIAS1 and DNA damage repair pathways. We show that PIAS1 is a component of the transcription-coupled repair complex, that includes the DNA damage end processing enzyme polynucleotide kinase-phosphatase (PNKP), and that PIAS1 is a SUMO E3 ligase for PNKP. Pias1 knockdown (KD) in HD mice had a normalizing effect on HD transcriptional dysregulation associated with synaptic function and disease-associated transcriptional coexpression modules enriched for DNA damage repair mechanisms as did reduction of PIAS1 in HD iPSC-derived neurons. KD also restored mutant HTT-perturbed enzymatic activity of PNKP and modulated genomic integrity of several transcriptionally normalized genes. The findings here now link SUMO modifying machinery to DNA damage repair responses and transcriptional modulation in neurodegenerative disease.


Asunto(s)
Enzimas Reparadoras del ADN/genética , Reparación del ADN , ADN/genética , Proteína Huntingtina/genética , Enfermedad de Huntington/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Proteínas Inhibidoras de STAT Activados/genética , Procesamiento Proteico-Postraduccional , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/genética , Animales , Diferenciación Celular , ADN/metabolismo , Daño del ADN , Enzimas Reparadoras del ADN/metabolismo , Modelos Animales de Enfermedad , Femenino , Humanos , Proteína Huntingtina/metabolismo , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas/metabolismo , Neuronas/patología , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Células Madre Pluripotentes/metabolismo , Células Madre Pluripotentes/patología , Cultivo Primario de Células , Proteínas Inhibidoras de STAT Activados/antagonistas & inhibidores , Proteínas Inhibidoras de STAT Activados/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/antagonistas & inhibidores , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Sumoilación , Transcripción Genética
6.
Stem Cell Reports ; 14(3): 406-419, 2020 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-32109367

RESUMEN

Aberrant neuronal development and the persistence of mitotic cellular populations have been implicated in a multitude of neurological disorders, including Huntington's disease (HD). However, the mechanism underlying this potential pathology remains unclear. We used a modified protocol to differentiate induced pluripotent stem cells (iPSCs) from HD patients and unaffected controls into neuronal cultures enriched for medium spiny neurons, the cell type most affected in HD. We performed single-cell and bulk transcriptomic and epigenomic analyses and demonstrated that a persistent cyclin D1+ neural stem cell (NSC) population is observed selectively in adult-onset HD iPSCs during differentiation. Treatment with a WNT inhibitor abrogates this NSC population while preserving neurons. Taken together, our findings identify a mechanism that may promote aberrant neurodevelopment and adult neurogenesis in adult-onset HD striatal neurons with the potential for therapeutic compensation.


Asunto(s)
Enfermedad de Huntington/patología , Células Madre Pluripotentes Inducidas/patología , Neuronas/patología , Vía de Señalización Wnt , Adulto , Edad de Inicio , Ciclo Celular/genética , Diferenciación Celular/genética , Células Cultivadas , Epigénesis Genética , Humanos , Enfermedad de Huntington/genética , Mitosis , Neostriado/patología , Células-Madre Neurales/metabolismo , Factores de Transcripción/metabolismo , Transcriptoma/genética , Regulación hacia Arriba/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...