Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Antioxid Redox Signal ; 25(10): 577-92, 2016 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-27306519

RESUMEN

SIGNIFICANCE: Due to its large families of redox-active enzymes, genetic amenability, and complete transparency, the nematode Caenorhabditis elegans has the potential to become an important model for the in vivo study of redox biology. RECENT ADVANCES: The recent development of several genetically encoded ratiometric reactive oxygen species (ROS) and redox sensors has revolutionized the quantification and precise localization of ROS and redox signals in living organisms. Only few exploratory studies have applied these sensors in C. elegans and undoubtedly much remains to be discovered in this model. As a follow-up to our recent findings that the C. elegans somatic gonad uses superoxide and hydrogen peroxide (H2O2) signals to communicate with the germline, we here analyze the patterns of H2O2 inside the C. elegans germline. CRITICAL ISSUES: Despite the advantages of genetically encoded ROS and redox sensors over classic chemical sensors, still several general as well as C. elegans-specific issues need to be addressed. The major concerns for the application of these sensors in C. elegans are (i) decreased vitality of some reporter strains, (ii) interference of autofluorescent compartments with the sensor signal, and (iii) the use of immobilization methods that do not influence the worm's redox physiology. FUTURE DIRECTIONS: We propose that several of the current issues may be solved by designing reporter strains carrying single copies of codon-optimized sensors. Preferably, these sensors should have their emission wavelengths in the red region, where autofluorescence is absent. Worm analysis could be optimized using four-dimensional ratiometric fluorescence microscopy of worms immobilized in microfluidic chips. Antioxid. Redox Signal. 25, 577-592.


Asunto(s)
Técnicas Biosensibles , Oxidación-Reducción , Especies Reactivas de Oxígeno/aislamiento & purificación , Animales , Caenorhabditis elegans , Proteínas Fluorescentes Verdes/química , Peróxido de Hidrógeno/química , Proteínas Luminiscentes/química , Proteínas Luminiscentes/metabolismo , Microscopía Fluorescente , Especies Reactivas de Oxígeno/química , Superóxidos/química
2.
Proc Natl Acad Sci U S A ; 111(24): E2501-9, 2014 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-24889636

RESUMEN

The antiglycemic drug metformin, widely prescribed as first-line treatment of type II diabetes mellitus, has lifespan-extending properties. Precisely how this is achieved remains unclear. Via a quantitative proteomics approach using the model organism Caenorhabditis elegans, we gained molecular understanding of the physiological changes elicited by metformin exposure, including changes in branched-chain amino acid catabolism and cuticle maintenance. We show that metformin extends lifespan through the process of mitohormesis and propose a signaling cascade in which metformin-induced production of reactive oxygen species increases overall life expectancy. We further address an important issue in aging research, wherein so far, the key molecular link that translates the reactive oxygen species signal into a prolongevity cue remained elusive. We show that this beneficial signal of the mitohormetic pathway is propagated by the peroxiredoxin PRDX-2. Because of its evolutionary conservation, peroxiredoxin signaling might underlie a general principle of prolongevity signaling.


Asunto(s)
Proteínas de Caenorhabditis elegans/fisiología , Caenorhabditis elegans/efectos de los fármacos , Hormesis/efectos de los fármacos , Hipoglucemiantes/farmacología , Longevidad/efectos de los fármacos , Metformina/farmacología , Peroxirredoxinas/fisiología , Acil-CoA Deshidrogenasa/metabolismo , Aminoácidos de Cadena Ramificada/química , Animales , Caenorhabditis elegans/metabolismo , Regulación de la Expresión Génica , Proteínas Fluorescentes Verdes/química , Calor , Peróxido de Hidrógeno/química , Mitocondrias/enzimología , Modelos Animales , Estrés Oxidativo , Consumo de Oxígeno , Desplegamiento Proteico , Proteómica , Especies Reactivas de Oxígeno , Rotenona/química , Transducción de Señal , Factores de Tiempo
3.
J Proteome Res ; 13(4): 1938-56, 2014 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-24555535

RESUMEN

The insulin/IGF-1 receptor is a major known determinant of dauer formation, stress resistance, longevity, and metabolism in Caenorhabditis elegans. In the past, whole-genome transcript profiling was used extensively to study differential gene expression in response to reduced insulin/IGF-1 signaling, including the expression levels of metabolism-associated genes. Taking advantage of the recent developments in quantitative liquid chromatography mass spectrometry (LC-MS)-based proteomics, we profiled the proteomic changes that occur in response to activation of the DAF-16 transcription factor in the germline-less glp-4(bn2);daf-2(e1370) receptor mutant. Strikingly, the daf-2 profile suggests extensive reorganization of intermediary metabolism, characterized by the upregulation of many core intermediary metabolic pathways. These include glycolysis/gluconeogenesis, glycogenesis, pentose phosphate cycle, citric acid cycle, glyoxylate shunt, fatty acid ß-oxidation, one-carbon metabolism, propionate and tyrosine catabolism, and complexes I, II, III, and V of the electron transport chain. Interestingly, we found simultaneous activation of reciprocally regulated metabolic pathways, which is indicative of spatiotemporal coordination of energy metabolism and/or extensive post-translational regulation of these enzymes. This restructuring of daf-2 metabolism is reminiscent to that of hypometabolic dauers, allowing the efficient and economical utilization of internal nutrient reserves and possibly also shunting metabolites through alternative energy-generating pathways to sustain longevity.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiología , Factor I del Crecimiento Similar a la Insulina/genética , Insulina/genética , Proteoma/genética , Receptor de Insulina/genética , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/análisis , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/metabolismo , Factores de Transcripción Forkhead , Técnicas de Silenciamiento del Gen , Redes y Vías Metabólicas/genética , Mutación/genética , Proteoma/análisis , Proteoma/química , Proteoma/metabolismo , Proteómica/métodos , Factores de Transcripción/análisis , Factores de Transcripción/química , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
4.
Mol Cell Proteomics ; 12(12): 3624-39, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24002365

RESUMEN

Reduced signaling through the C. elegans insulin/insulin-like growth factor-1-like tyrosine kinase receptor daf-2 and dietary restriction via bacterial dilution are two well-characterized lifespan-extending interventions that operate in parallel or through (partially) independent mechanisms. Using accurate mass and time tag LC-MS/MS quantitative proteomics, we detected that the abundance of a large number of ribosomal subunits is decreased in response to dietary restriction, as well as in the daf-2(e1370) insulin/insulin-like growth factor-1-receptor mutant. In addition, general protein synthesis levels in these long-lived worms are repressed. Surprisingly, ribosomal transcript levels were not correlated to actual protein abundance, suggesting that post-transcriptional regulation determines ribosome content. Proteomics also revealed the increased presence of many structural muscle cell components in long-lived worms, which appeared to result from the prioritized preservation of muscle cell volume in nutrient-poor conditions or low insulin-like signaling. Activation of DAF-16, but not diet restriction, stimulates mRNA expression of muscle-related genes to prevent muscle atrophy. Important daf-2-specific proteome changes include overexpression of aerobic metabolism enzymes and general activation of stress-responsive and immune defense systems, whereas the increased abundance of many protein subunits of the proteasome core complex is a dietary-restriction-specific characteristic.


Asunto(s)
Caenorhabditis elegans/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Insulina/metabolismo , Proteínas Musculares/metabolismo , Músculos/metabolismo , Transducción de Señal , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Restricción Calórica , Cromatografía Liquida , Metabolismo Energético/genética , Factores de Transcripción Forkhead , Regulación de la Expresión Génica , Insulina/genética , Factor I del Crecimiento Similar a la Insulina/genética , Longevidad/genética , Proteínas Musculares/genética , Mutación , Biosíntesis de Proteínas , Proteómica/métodos , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Ribosomas/genética , Ribosomas/metabolismo , Espectrometría de Masas en Tándem , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
5.
Antioxid Redox Signal ; 17(6): 890-901, 2012 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-22369044

RESUMEN

UNLABELLED: Increased oxidative stress is associated with various diseases and aging, while adaptation to heat stress is an important determinant of survival and contributes to longevity. However, the impact of oxidative stress on heat resistance remains largely unclear. AIM: In this study we investigated how oxidative stress impinges on heat stress responses. RESULTS: We report that hydrogen-peroxide (H(2)O(2)) pretreatment inhibits both acquired thermotolerance and heat-induced Hsp70 expression in mammalian cells, as well as acquired thermotolerance in the nematode Caenorhabditis elegans, via RNA interference. Moreover, we demonstrate that elimination of RNA interference by silencing key enzymes in microRNA biogenesis, dcr-1 or pash-1, restores the diminished intrinsic thermotolerance of aged and H(2)O(2)-elimination compromised (catalase-2 and peroxiredoxin-2 deficient) worms. INNOVATION AND CONCLUSION: These results uncover a novel post-transcriptional element in the regulation of heat stress adaptation under oxidative conditions that may have implications in disease susceptibility and aging.


Asunto(s)
Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/genética , Interferencia de ARN/fisiología , Animales , Células COS , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiología , Chlorocebus aethiops , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Respuesta al Choque Térmico/efectos de los fármacos , Respuesta al Choque Térmico/genética , Peróxido de Hidrógeno/farmacología , Microscopía Fluorescente
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...