Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 13(2)2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38256760

RESUMEN

The transition from seed to seedling represents a critical developmental step in the life cycle of higher plants, dramatically affecting plant ontogenesis and stress tolerance. The release from dormancy to acquiring germination ability is defined by a balance of phytohormones, with the substantial contribution of abscisic acid (ABA), which inhibits germination. We studied the embryonic axis of Pisum sativum L. before and after radicle protrusion. Our previous work compared RNA sequencing-based transcriptomics in the embryonic axis isolated before and after radicle protrusion. The current study aims to analyze ABA-dependent gene regulation during the transition of the embryonic axis from the germination to post-germination stages. First, we determined the levels of abscisates (ABA, phaseic acid, dihydrophaseic acid, and neo-phaseic acid) using ultra-high-performance liquid chromatography-tandem mass spectrometry. Second, we made a detailed annotation of ABA-associated genes using RNA sequencing-based transcriptome profiling. Finally, we analyzed the DNA methylation patterns in the promoters of the PsABI3, PsABI4, and PsABI5 genes. We showed that changes in the abscisate profile are characterized by the accumulation of ABA catabolites, and the ABA-related gene profile is accompanied by the upregulation of genes controlling seedling development and the downregulation of genes controlling water deprivation. The expression of ABI3, ABI4, and ABI5, which encode crucial transcription factors during late maturation, was downregulated by more than 20-fold, and their promoters exhibited high levels of methylation already at the late germination stage. Thus, although ABA remains important, other regulators seems to be involved in the transition from seed to seedling.

2.
Funct Plant Biol ; 50(7): 532-539, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37258494

RESUMEN

Light is a crucial factor affecting plant growth and development. Besides providing the energy for photosynthesis, light serves as a sensory cue to control the adaptation of plants to environmental changes. We used the etiolated maize (Zea mays ) seedlings as a model system to study the red light-regulated growth. Exposure of the maize seedlings to red light resulted in growth inhibition of mesocotyls. We demonstrate for the first time (to the best our knowledge) that red light affected the patterns of apoplastic fluid (AF) metabolites extracted from the mesocotyl segments. By means of the untargeted gas chromatography-mass spectrometry (GC-MS)-based metabolomics approach, we identified 44 metabolites in the AF of maize mesocotyls and characterised the dynamics of their relative tissue abundances. The characteristic metabolite patterns of mesocotyls dominated with mono- and disaccharides, organic acids, amino acids, and other nitrogen-containing compounds. Upon red light irradiation, the contents of ß -alanine, putrescine and trans -aconitate significantly increased (P -value<0.05). In contrast, there was a significant decrease in the total ascorbate content in the AF of maize mesocotyls. The regulatory role of apoplastic metabolites in the red light-induced inhibition of maize mesocotyl elongation is discussed.


Asunto(s)
Luz , Zea mays , Zea mays/metabolismo , Plantones , Fotosíntesis , Transporte Biológico
3.
Plants (Basel) ; 11(15)2022 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-35956466

RESUMEN

Transition from seed to seedling represents a critical stage in plants' life cycles. This process includes three significant events in the seeds: (i) tissue hydration, (ii) the mobilization of reserve nutrients, and (iii) the activation of metabolic activity. Global metabolic rearrangements lead to the initiation of radicle growth and the resumption of vegetative development. It requires massive reprogramming of the transcriptome, proteome, metabolome, and attendant signaling pathways, resulting in the silencing of seed-maturation genes and the activation of vegetative growth genes. This Special Issue discusses the mechanisms of genetic, epigenetic, and hormonal switches during seed-to-seedling transitions. Detailed information has also been covered regarding the influence of germination features on seedling establishment.

4.
Plants (Basel) ; 11(13)2022 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-35807638

RESUMEN

The seed-to-seedling transition is a crucial step in the plant life cycle. The transition occurs at the end of seed germination and corresponds to the initiation of embryonic root growth. To improve our understanding of how a seed transforms into a seedling, we germinated the Pisum sativum L. seeds for 72 h and divided them into samples before and after radicle protrusion. Before radicle protrusion, seeds survived after drying and formed normally developed seedlings upon rehydration. Radicle protrusion increased the moisture content level in seed axes, and the accumulation of ROS first generated in the embryonic root and plumule. The water and oxidative status shift correlated with the desiccation tolerance loss. Then, we compared RNA sequencing-based transcriptomics in the embryonic axes isolated from pea seeds before and after radicle protrusion. We identified 24,184 differentially expressed genes during the transition to the post-germination stage. Among them, 2101 genes showed more prominent expression. They were related to primary and secondary metabolism, photosynthesis, biosynthesis of cell wall components, redox status, and responses to biotic stress. On the other hand, 415 genes showed significantly decreased expression, including the groups related to water deprivation (eight genes) and response to the ABA stimulus (fifteen genes). We assume that the water deprivation group, especially three genes also belonging to ABA stimulus (LTI65, LTP4, and HVA22E), may be crucial for the desiccation tolerance loss during a metabolic switch from seed to seedling. The latter is also accompanied by the suppression of ABA-related transcription factors ABI3, ABI4, and ABI5. Among them, HVA22E, ABI4, and ABI5 were highly conservative in functional domains and showed homologous sequences in different drought-tolerant species. These findings elaborate on the critical biochemical pathways and genes regulating seed-to-seedling transition.

5.
Plants (Basel) ; 10(11)2021 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-34834870

RESUMEN

The present study is aimed at disclosing metabolic profile alterations in the leaves of the Medicago lupulina MlS-1 line that result from high-efficiency arbuscular mycorrhiza (AM) symbiosis formed with Rhizophagus irregularis under condition of a low phosphorus level in the substrate. A highly effective AM symbiosis was established in the period from the stooling to the shoot branching initiation stage (the efficiency in stem height exceeded 200%). Mycorrhization led to a more intensive accumulation of phosphates (glycerophosphoglycerol and inorganic phosphate) in M. lupulina leaves. Metabolic spectra were detected with GS-MS analysis. The application of complex mathematical analyses made it possible to identify the clustering of various groups of 320 metabolites and thus demonstrate the central importance of the carbohydrate and carboxylate-amino acid clusters. The results obtained indicate a delay in the metabolic development of mycorrhized plants. Thus, AM not only accelerates the transition between plant developmental stages but delays biochemical "maturation" mainly in the form of a lag of sugar accumulation in comparison with non-mycorrhized plants. Several methods of statistical modeling proved that, at least with respect to determining the metabolic status of host-plant leaves, stages of phenological development have priority over calendar age.

6.
Plants (Basel) ; 10(9)2021 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-34579418

RESUMEN

Transition from seed to seedling is one of the critical developmental steps, dramatically affecting plant growth and viability. Before plants enter the vegetative phase of their ontogenesis, massive rearrangements of signaling pathways and switching of gene expression programs are required. This results in suppression of the genes controlling seed maturation and activation of those involved in regulation of vegetative growth. At the level of hormonal regulation, these events are controlled by the balance of abscisic acid and gibberellins, although ethylene, auxins, brassinosteroids, cytokinins, and jasmonates are also involved. The key players include the members of the LAFL network-the transcription factors LEAFY COTYLEDON1 and 2 (LEC 1 and 2), ABSCISIC ACID INSENSITIVE3 (ABI3), and FUSCA3 (FUS3), as well as DELAY OF GERMINATION1 (DOG1). They are the negative regulators of seed germination and need to be suppressed before seedling development can be initiated. This repressive signal is mediated by chromatin remodeling complexes-POLYCOMB REPRESSIVE COMPLEX 1 and 2 (PRC1 and PRC2), as well as PICKLE (PKL) and PICKLE-RELATED2 (PKR2) proteins. Finally, epigenetic methylation of cytosine residues in DNA, histone post-translational modifications, and post-transcriptional downregulation of seed maturation genes with miRNA are discussed. Here, we summarize recent updates in the study of hormonal and epigenetic switches involved in regulation of the transition from seed germination to the post-germination stage.

7.
Int J Mol Sci ; 22(1)2020 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-33374189

RESUMEN

Desiccation tolerance appeared as the key adaptation feature of photoautotrophic organisms for survival in terrestrial habitats. During the further evolution, vascular plants developed complex anatomy structures and molecular mechanisms to maintain the hydrated state of cell environment and sustain dehydration. However, the role of the genes encoding the mechanisms behind this adaptive feature of terrestrial plants changed with their evolution. Thus, in higher vascular plants it is restricted to protection of spores, seeds and pollen from dehydration, whereas the mature vegetative stages became sensitive to desiccation. During maturation, orthodox seeds lose up to 95% of water and successfully enter dormancy. This feature allows seeds maintaining their viability even under strongly fluctuating environmental conditions. The mechanisms behind the desiccation tolerance are activated at the late seed maturation stage and are associated with the accumulation of late embryogenesis abundant (LEA) proteins, small heat shock proteins (sHSP), non-reducing oligosaccharides, and antioxidants of different chemical nature. The main regulators of maturation and desiccation tolerance are abscisic acid and protein DOG1, which control the network of transcription factors, represented by LEC1, LEC2, FUS3, ABI3, ABI5, AGL67, PLATZ1, PLATZ2. This network is complemented by epigenetic regulation of gene expression via methylation of DNA, post-translational modifications of histones and chromatin remodeling. These fine regulatory mechanisms allow orthodox seeds maintaining desiccation tolerance during the whole period of germination up to the stage of radicle protrusion. This time point, in which seeds lose desiccation tolerance, is critical for the whole process of seed development.


Asunto(s)
Aclimatación , Epigénesis Genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/biosíntesis , Semillas/metabolismo , Factores de Transcripción/biosíntesis , Deshidratación/genética , Deshidratación/metabolismo , Desecación , Proteínas de Plantas/genética , Semillas/genética , Factores de Transcripción/genética
8.
Int J Mol Sci ; 21(23)2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-33271881

RESUMEN

For centuries, crop plants have represented the basis of the daily human diet. Among them, cereals and legumes, accumulating oils, proteins, and carbohydrates in their seeds, distinctly dominate modern agriculture, thus play an essential role in food industry and fuel production. Therefore, seeds of crop plants are intensively studied by food chemists, biologists, biochemists, and nutritional physiologists. Accordingly, seed development and germination as well as age- and stress-related alterations in seed vigor, longevity, nutritional value, and safety can be addressed by a broad panel of analytical, biochemical, and physiological methods. Currently, functional genomics is one of the most powerful tools, giving direct access to characteristic metabolic changes accompanying plant development, senescence, and response to biotic or abiotic stress. Among individual post-genomic methodological platforms, proteomics represents one of the most effective ones, giving access to cellular metabolism at the level of proteins. During the recent decades, multiple methodological advances were introduced in different branches of life science, although only some of them were established in seed proteomics so far. Therefore, here we discuss main methodological approaches already employed in seed proteomics, as well as those still waiting for implementation in this field of plant research, with a special emphasis on sample preparation, data acquisition, processing, and post-processing. Thereby, the overall goal of this review is to bring new methodologies emerging in different areas of proteomics research (clinical, food, ecological, microbial, and plant proteomics) to the broad society of seed biologists.


Asunto(s)
Proteínas de Plantas/metabolismo , Proteoma , Proteómica , Semillas/metabolismo , Cromatografía Liquida , Biología Computacional/métodos , Humanos , Espectrometría de Masas , Procesamiento Proteico-Postraduccional , Proteómica/métodos , Flujo de Trabajo
9.
Funct Plant Biol ; 47(5): 409-424, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32209205

RESUMEN

Developing seeds of some higher plants are photosynthetically active and contain chlorophylls (Chl), which are typically destroyed at the late stages of seed maturation. However, in some crop plant cultivars, degradation of embryonic Chl remains incomplete, and mature seeds preserve green colour, as it is known for green-seeded cultivars of pea (Pisum sativum L.). The residual Chl compromise seed quality and represent a severe challenge for farmers. Hence, comprehensive understanding of the molecular mechanisms, underlying incomplete Chl degradation is required for maintaining sustainable agriculture. Therefore, here we address dynamics of plastid conversion and photochemical activity alterations, accompanying degradation of Chl in embryos of yellow- and green-seeded cultivars Frisson and Rondo respectively. The yellow-seeded cultivar demonstrated higher rate of Chl degradation at later maturation stage, accompanied with termination of photochemical activity, seed dehydration and conversion of green plastids into amyloplasts. In agreement with this, expression of genes encoding enzymes of Chl degradation was lower in the green seeded cultivar, with the major differences in the levels of Chl b reductase (NYC1) and pheophytinase (PPH) transcripts. Thus, the difference between yellow and green seeds can be attributed to incomplete Chl degradation in the latter at the end of maturation period.


Asunto(s)
Lathyrus , Pisum sativum , Clorofila , Pisum sativum/genética , Plastidios , Semillas
10.
Int J Mol Sci ; 21(2)2020 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-31952342

RESUMEN

Protein glycation is usually referred to as an array of non-enzymatic post-translational modifications formed by reducing sugars and carbonyl products of their degradation. The resulting advanced glycation end products (AGEs) represent a heterogeneous group of covalent adducts, known for their pro-inflammatory effects in mammals, and impacting on pathogenesis of metabolic diseases and ageing. In plants, AGEs are the markers of tissue ageing and response to environmental stressors, the most prominent of which is drought. Although water deficit enhances protein glycation in leaves, its effect on seed glycation profiles is still unknown. Moreover, the effect of drought on biological activities of seed protein in mammalian systems is still unstudied with respect to glycation. Therefore, here we address the effects of a short-term drought on the patterns of seed protein-bound AGEs and accompanying alterations in pro-inflammatory properties of seed protein in the context of seed metabolome dynamics. A short-term drought, simulated as polyethylene glycol-induced osmotic stress and applied at the stage of seed filling, resulted in the dramatic suppression of primary seed metabolism, although the secondary metabolome was minimally affected. This was accompanied with significant suppression of NF-kB activation in human SH-SY5Y neuroblastoma cells after a treatment with protein hydrolyzates, isolated from the mature seeds of drought-treated plants. This effect could not be attributed to formation of known AGEs. Most likely, the prospective anti-inflammatory effect of short-term drought is related to antioxidant effect of unknown secondary metabolite protein adducts, or down-regulation of unknown plant-specific AGEs due to suppression of energy metabolism during seed filling.


Asunto(s)
Sequías , Metabolómica/métodos , Pisum sativum/metabolismo , Proteínas de Plantas/metabolismo , Procesamiento Proteico-Postraduccional , Semillas/metabolismo , Antioxidantes/metabolismo , Línea Celular Tumoral , Metabolismo Energético , Cromatografía de Gases y Espectrometría de Masas , Productos Finales de Glicación Avanzada/metabolismo , Glicosilación , Humanos , FN-kappa B/metabolismo , Estrés Fisiológico
11.
PeerJ ; 7: e7495, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31497392

RESUMEN

Arbuscular mycorrhiza (AM) is known to be a mutually beneficial plant-fungal symbiosis; however, the effect of mycorrhization is heavily dependent on multiple biotic and abiotic factors. Therefore, for the proper employment of such plant-fungal symbiotic systems in agriculture, a detailed understanding of the molecular basis of the plant developmental response to mycorrhization is needed. The aim of this work was to uncover the physiological and metabolic alterations in pea (Pisum sativum L.) leaves associated with mycorrhization at key plant developmental stages. Plants of pea cv. Finale were grown in constant environmental conditions under phosphate deficiency. The plants were analyzed at six distinct time points, which corresponded to certain developmental stages of the pea: I: 7 days post inoculation (DPI) when the second leaf is fully unfolded with one pair of leaflets and a simple tendril; II: 21 DPI at first leaf with two pairs of leaflets and a complex tendril; III: 32 DPI when the floral bud is enclosed; IV: 42 DPI at the first open flower; V: 56 DPI when the pod is filled with green seeds; and VI: 90-110 DPI at the dry harvest stage. Inoculation with Rhizophagus irregularis had no effect on the fresh or dry shoot weight, the leaf photochemical activity, accumulation of chlorophyll a, b or carotenoids. However, at stage III (corresponding to the most active phase of mycorrhiza development), the number of internodes between cotyledons and the youngest completely developed leaf was lower in the inoculated plants than in those without inoculation. Moreover, inoculation extended the vegetation period of the host plants, and resulted in increase of the average dry weight per seed at stage VI. The leaf metabolome, as analyzed with GC-MS, included about three hundred distinct metabolites and showed a strong correlation with plant age, and, to a lesser extent, was influenced by mycorrhization. Metabolic shifts influenced the levels of sugars, amino acids and other intermediates of nitrogen and phosphorus metabolism. The use of unsupervised dimension reduction methods showed that (i) at stage II, the metabolite spectra of inoculated plants were similar to those of the control, and (ii) at stages IV and V, the leaf metabolic profiles of inoculated plants shifted towards the profiles of the control plants at earlier developmental stages. At stage IV the inoculated plants exhibited a higher level of metabolism of nitrogen, organic acids, and lipophilic compounds in comparison to control plants. Thus, mycorrhization led to the retardation of plant development, which was also associated with higher seed biomass accumulation in plants with an extended vegetation period. The symbiotic crosstalk between host plant and AM fungi leads to alterations in several biochemical pathways the details of which need to be elucidated in further studies.

12.
Int J Mol Sci ; 20(15)2019 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-31357424

RESUMEN

Seeds represent the major source of food protein, impacting on both human nutrition and animal feeding. Therefore, seed quality needs to be appropriately addressed in the context of viability and food safety. Indeed, long-term and inappropriate storage of seeds might result in enhancement of protein glycation, which might affect their quality and longevity. Glycation of seed proteins can be probed by exhaustive acid hydrolysis and quantification of the glycation adduct Nɛ-(carboxymethyl)lysine (CML) by liquid chromatography-mass spectrometry (LC-MS). This approach, however, does not allow analysis of thermally and chemically labile glycation adducts, like glyoxal-, methylglyoxal- and 3-deoxyglucosone-derived hydroimidazolones. Although enzymatic hydrolysis might be a good solution in this context, it requires aqueous conditions, which cannot ensure reconstitution of seed protein isolates. Because of this, the complete profiles of seed advanced glycation end products (AGEs) are not characterized so far. Therefore, here we propose the approach, giving access to quantitative solubilization of seed proteins in presence of sodium dodecyl sulfate (SDS) and their quantitative enzymatic hydrolysis prior to removal of SDS by reversed phase solid phase extraction (RP-SPE). Using methylglyoxal-derived hydroimidazolone 1 (MG-H1) as a case example, we demonstrate the applicability of this method for reliable and sensitive LC-MS-based quantification of chemically labile AGEs and its compatibility with bioassays.


Asunto(s)
Imidazoles/química , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Piruvaldehído/química , Semillas/química , Cromatografía Liquida , Productos Finales de Glicación Avanzada/química , Productos Finales de Glicación Avanzada/metabolismo , Glicosilación , Hidrólisis , Espectrometría de Masas , Proteínas de Plantas/aislamiento & purificación , Piruvaldehído/análogos & derivados , Reproducibilidad de los Resultados , Semillas/metabolismo , Extracción en Fase Sólida , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
13.
Funct Plant Biol ; 46(6): 533-542, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30940327

RESUMEN

Phosphatidic acids (PAs) are a key intermediate in phospholipid biosynthesis, and a central element in numerous signalling pathways. Functions of PAs are related to their fundamental role in molecular interactions within cell membranes modifying membrane bending, budding, fission and fusion. Here we tested the hypothesis that PAs are capable of direct transport of ions across bio-membranes. We have demonstrated that PAs added to the maize plasma membrane vesicles induced ionophore-like transmembrane transport of Ca2+, H+ and Mg2+. PA-induced Ca2+ fluxes increased with an increasing PAs acyl chain unsaturation. For all the PAs analysed, the effect on Ca2+ permeability increased with increasing pH (pH 8.0>pH 7.2>pH 6.0). The PA-induced Ca2+, Mg2+ and H+ permeability was also more pronounced in the endomembrane vesicles as compared with the plasma membrane vesicles. Addition of PA to protoplasts from Arabidopsis thaliana (L.) Heynh. roots constitutively expressing aequorin triggered elevation of the cytosolic Ca2+ activity, indicating that the observed PA-dependent Ca2+ transport occurs in intact plants.


Asunto(s)
Calcio , Ácidos Fosfatidicos , Aequorina , Membrana Celular , Protoplastos
14.
Int J Mol Sci ; 19(12)2018 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-30558315

RESUMEN

Due to low culturing costs and high seed protein contents, legumes represent the main global source of food protein. Pea (Pisum sativum L.) is one of the major legume crops, impacting both animal feed and human nutrition. Therefore, the quality of pea seeds needs to be ensured in the context of sustainable crop production and nutritional efficiency. Apparently, changes in seed protein patterns might directly affect both of these aspects. Thus, here, we address the pea seed proteome in detail and provide, to the best of our knowledge, the most comprehensive annotation of the functions and intracellular localization of pea seed proteins. To address possible intercultivar differences, we compared seed proteomes of yellow- and green-seeded pea cultivars in a comprehensive case study. The analysis revealed totally 1938 and 1989 nonredundant proteins, respectively. Only 35 and 44 proteins, respectively, could be additionally identified after protamine sulfate precipitation (PSP), potentially indicating the high efficiency of our experimental workflow. Totally 981 protein groups were assigned to 34 functional classes, which were to a large extent differentially represented in yellow and green seeds. Closer analysis of these differences by processing of the data in KEGG and String databases revealed their possible relation to a higher metabolic status and reduced longevity of green seeds.


Asunto(s)
Clorofila/análisis , Pisum sativum/química , Proteínas de Plantas/análisis , Semillas/química , Secuencia de Aminoácidos , Precipitación Química , Pisum sativum/embriología , Proteoma/análisis , Proteómica , Espectrometría de Masas en Tándem
15.
Plant Signal Behav ; 13(9): e1514895, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30188770

RESUMEN

Functions of exogenous L-ascorbic acid in plant roots are poorly understood. Recent study by Makavitskaya et al. (doi.org/10.1093/jxb/ery056) has demonstrated that exogenous ascorbate can be released from roots in response to salt stress, and can trigger elevation in the cytosolic free Ca2+. Here, we report that exogenous ascorbate significantly modifies root elongation in Arabidopsis thaliana. Using a medium exchange technique, we have shown that 10-100 µM ascorbate induces small but significant increase in root elongation while higher levels cause its dramatic decrease. Root border cells of Pisum sativum have been losing viability twice faster in the presence of ascorbate that under control conditions, as tested by the confocal microscopy and a combined staining with propidium iodide and fluorescein diacetate.


Asunto(s)
Arabidopsis/citología , Arabidopsis/crecimiento & desarrollo , Ácido Ascórbico/farmacología , Raíces de Plantas/citología , Raíces de Plantas/crecimiento & desarrollo , Arabidopsis/efectos de los fármacos , Señalización del Calcio/efectos de los fármacos , Raíces de Plantas/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo
16.
Funct Plant Biol ; 45(4): 440-452, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32290983

RESUMEN

The magnitude and the direction of the gravitational field represent an important environmental factor affecting plant development. In this context, the absence or frequent alterations of the gravity field (i.e. microgravity conditions) might compromise extraterrestrial agriculture and hence space inhabitation by humans. To overcome the deleterious effects of microgravity, a complete understanding of the underlying changes on the macromolecular level is necessary. However, although microgravity-related changes in gene expression are well characterised on the transcriptome level, proteomic data are limited. Moreover, information about the microgravity-induced changes in the seedling proteome during seed germination and the first steps of seedling development is completely missing. One of the valuable tools to assess gravity-related issues is 3D clinorotation (i.e. rotation in two axes). Therefore, here we address the effects of microgravity, simulated by a two-axial clinostat, on the proteome of 24- and 48-h-old seedlings of oilseed rape (Brassica napus L.). The liquid chromatography-MS-based proteomic analysis and database search revealed 95 up- and 38 downregulated proteins in the tryptic digests obtained from the seedlings subjected to simulated microgravity, with 42 and 52 annotations detected as being unique for 24- and 48-h treatment times, respectively. The polypeptides involved in protein metabolism, transport and signalling were annotated as the functional groups most strongly affected by 3-D clinorotation.

17.
Funct Plant Biol ; 45(2): 228-235, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32291037

RESUMEN

The pea seeds are photosynthetically active until the end of the maturation phase, when the embryonic chlorophylls degrade. However, in some cultivars, the underlying mechanisms are compromised, and the mature seeds preserve green colour. The residual chlorophylls can enhance oxidative degradation of reserve biomolecules, and affect thereby the quality, shelf life and nutritive value of seeds. Despite this, the formation, degradation, and physical properties of the seed chlorophylls are still not completely characterised. So here we address the dynamics of seed photochemical activity in the yellow- and green-seeded pea cultivars by the pulse amplitude modulation (PAM) fluorometric analysis. The experiments revealed the maximal photochemical activity at the early- and mid-cotyledon stages. Thereby, the active centres of PSII were saturated at the light intensity of 15-20µmol photons m-2 s-1. Despite of their shielding from the light by the pod wall and seed coat, photochemical reactions can be registered in the seeds with green embryo. Importantly, even at the low light intensities, the photochemical activity in the coats and cotyledons could be detected. The fast transients of the chlorophyll a fluorescence revealed a higher photochemical activity in the coat of yellow-seeded cultivars in comparison to those with the green-seeded ones. However, it declined rapidly in all seeds at the late cotyledon stage, and was accompanied with the decrease of the seed water content. Thus, the termination of photosynthetic activity in seeds is triggered by their dehydration.

18.
Int J Mol Sci ; 18(9)2017 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-28926960

RESUMEN

The embryos of some angiosperms (usually referred to as chloroembryos) contain chlorophylls during the whole period of embryogenesis. Developing embryos have photochemically active chloroplasts and are able to produce assimilates, further converted in reserve biopolymers, whereas at the late steps of embryogenesis, seeds undergo dehydration, degradation of chlorophylls, transformation of chloroplast in storage plastids, and enter the dormancy period. However, in some seeds, the process of chlorophyll degradation remains incomplete. These residual chlorophylls compromise the quality of seed material in terms of viability, nutritional value, and shelf life, and represent a serious challenge for breeders and farmers. The mechanisms of chlorophyll degradation during seed maturation are still not completely understood, and only during the recent decades the main pathways and corresponding enzymes could be characterized. Among the identified players, the enzymes of pheophorbide a oxygenase pathway and the proteins encoded by STAY GREEN (SGR) genes are the principle ones. On the biochemical level, abscisic acid (ABA) is the main regulator of seed chlorophyll degradation, mediating activity of corresponding catabolic enzymes on the transcriptional level. In general, a deep insight in the mechanisms of chlorophyll degradation is required to develop the approaches for production of chlorophyll-free high quality seeds.


Asunto(s)
Clorofila/metabolismo , Regulación de la Expresión Génica de las Plantas , Reguladores del Crecimiento de las Plantas/metabolismo , Semillas/metabolismo , Magnoliopsida/genética , Magnoliopsida/crecimiento & desarrollo , Magnoliopsida/metabolismo , Oxigenasas/genética , Oxigenasas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Semillas/genética , Semillas/crecimiento & desarrollo
19.
J Biol Chem ; 292(38): 15758-15776, 2017 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-28611063

RESUMEN

Glycation is a post-translational modification resulting from the interaction of protein amino and guanidino groups with carbonyl compounds. Initially, amino groups react with reducing carbohydrates, yielding Amadori and Heyns compounds. Their further degradation results in formation of advanced glycation end products (AGEs), also originating from α-dicarbonyl products of monosaccharide autoxidation and primary metabolism. In mammals, AGEs are continuously formed during the life of the organism, accumulate in tissues, are well-known markers of aging, and impact age-related tissue stiffening and atherosclerotic changes. However, the role of AGEs in age-related molecular alterations in plants is still unknown. To fill this gap, we present here a comprehensive study of the age-related changes in the Arabidopsis thaliana glycated proteome, including the proteins affected and specific glycation sites therein. We also consider the qualitative and quantitative changes in glycation patterns in terms of the general metabolic background, pathways of AGE formation, and the status of plant anti-oxidative/anti-glycative defense. Although the patterns of glycated proteins were only minimally influenced by plant age, the abundance of 96 AGE sites in 71 proteins was significantly affected in an age-dependent manner and clearly indicated the existence of age-related glycation hot spots in the plant proteome. Homology modeling revealed glutamyl and aspartyl residues in close proximity (less than 5 Å) to these sites in three aging-specific and eight differentially glycated proteins, four of which were modified in catalytic domains. Thus, the sites of glycation hot spots might be defined by protein structure that indicates, at least partly, site-specific character of glycation.


Asunto(s)
Arabidopsis/metabolismo , Productos Finales de Glicación Avanzada/metabolismo , Proteómica , Secuencia de Aminoácidos , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Glicosilación , Modelos Moleculares , Oxidación-Reducción , Conformación Proteica , Proteolisis , Factores de Tiempo , Tripsina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...