Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 19(6): e0305053, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38924033

RESUMEN

This study aims to assess the level of metal contamination and the ecological risk index at the abandoned Zaida Pb/Zn mining site in eastern Morocco and identify native plant species found on the site that can be used in site rehabilitation through phytoremediation strategies. Samples from seven native and abundant plant species at the site, along with their rhizospheric soils, were collected and analyzed using Inductively Coupled Plasma Mass Spectrometry (ICP-MS) to determine the concentrations of various metal(loid)s, including As, Cu, Ni, Cd, Sb, Zn, and Pb. Indicators of soil pollution and ecological risks were also assessed, including the enrichment factor (EF), pollution index (PI), and ecological risk index (ERI). The Biological Accumulation Coefficient (BAC), Translocation Factor (TF), and Biological Concentration Factor (BCF) of plant samples were calculated. The results reveal polymetallic soil contamination, with notably higher concentrations of Pb, Cu and Zn, reaching respectively 5568 mg kg-1 DW, 152 mg kg-1 DW, and 148 mg kg-1 DW, indicating a significant potential ecological risk. The enrichment factor (EF) was also assessed for each metal(loid)s, and the results indicated that the metal contamination was of anthropogenic origin and linked to intensive mining activities in Zaida. These findings are supported by the pollution index (PI) ranging from 1.6 to 10.01, which reveals an extremely high metal(loid)s pollution level. None of the plant species exhibited a hyperaccumulation of metal(loid)s. However, Artemisia herba alba demonstrated a strong capacity to accumulate Pb in its aboveground parts, with a concentration of 468 mg kg-1 DW. Stipa tenacissima, Retama spherocarpa, and Astragalus armatus, showed a significant Pb accumulation in their roots reaching 280, 260, and 256 mg kg-1 DW.respectively. Based on BAC, TF, and BCF, Stipa tenacissima exhibited potential for Ni and Cd phytostabilization, as well as the ability for Zn phytoextraction. Additionally, Artemisia herba alba displayed the capability to phytoextract Cd and had a high propensity to translocate all the studied metal(loid)s. Astragalus armatus has the potential to be used in the phytostabilization of Zn and Ni, as well as for the phytoextraction of As and Sb. These native species from the Zaida site, although not hyperaccumulators, have the potential to contribute significantly to the phytoextraction or phytostabilization of potentially toxic elements (PTEs). Moreover, they can serve as vegetative cover to mitigate the erosion and dispersion of metal(loid)s.


Asunto(s)
Biodegradación Ambiental , Plomo , Minería , Plantas , Contaminantes del Suelo , Zinc , Marruecos , Zinc/análisis , Zinc/metabolismo , Contaminantes del Suelo/análisis , Contaminantes del Suelo/metabolismo , Plomo/metabolismo , Plomo/análisis , Plantas/metabolismo , Plantas/química , Monitoreo del Ambiente/métodos , Monitoreo Biológico/métodos , Suelo/química
2.
Plants (Basel) ; 12(23)2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-38068599

RESUMEN

Climate change has significantly exacerbated the effects of abiotic stresses, particularly high temperatures and drought stresses. This study aims to uncover the mechanisms underlying heat and drought tolerance in lentil accessions. To achieve this objective, twelve accessions were subjected to high-temperature stress (32/20 °C), while seven accessions underwent assessment under drought stress conditions (50% of field capacity) during the reproductive stage. Our findings revealed a significant increase in catalase activity across all accessions under both stress conditions, with ILL7814 and ILL7835 recording the highest accumulations of 10.18 and 9.33 under drought stress, respectively, and 14 µmol H2O2 mg protein-1 min-1 under high temperature. Similarly, ascorbate peroxidase significantly increased in all tolerant accessions due to high temperatures, with ILL6359, ILL7835, and ILL8029 accumulating the highest values with up 50 µmol ascorbate mg protein-1 min-1. In contrast, no significant increase was obtained for all accessions subjected to water stress, although the drought-tolerant accessions accumulated more APX activity (16.59 t to 25.08 µmol ascorbate mg protein-1 min-1) than the sensitive accessions. The accessions ILL6075, ILL7814, and ILL8029 significantly had the highest superoxide dismutase activity under high temperature, while ILL6363, ILL7814, and ILL7835 accumulated the highest values under drought stress, each with 22 to 25 units mg protein-1. Under both stress conditions, ILL7814 and ILL7835 recorded the highest contents in proline (38 to 45 µmol proline/g FW), total flavonoids (0.22 to 0.77 mg QE g-1 FW), total phenolics (7.50 to 8.79 mg GAE g-1 FW), total tannins (5.07 to 20 µg CE g-1 FW), and total antioxidant activity (60 to 70%). Further, ILL7814 and ILL6338 significantly recorded the highest total soluble sugar content under high temperature (71.57 and 74.24 mg g-1, respectively), while ILL7835 achieved the maximum concentration (125 mg g-1) under drought stress. The accessions ILL8029, ILL6104, and ILL7814 had the highest values of reducing sugar under high temperature with 0.62 to 0.79 mg g-1, whereas ILL6075, ILL6363, and ILL6362 accumulated the highest levels of this component under drought stress with 0.54 to 0.66 mg g-1. Overall, our findings contribute to a deeper understanding of the metabolomic responses of lentil to drought and heat stresses, serving as a valuable reference for lentil stress tolerance breeding.

3.
Plants (Basel) ; 12(15)2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37570958

RESUMEN

Auxin response factors (ARFs) act as key elements of the auxin-signaling pathway and play important roles in the process of a plant's growth, development, and response to environmental conditions. We studied the implication of the SlARF2 gene in the tomato response to salt (150 mM of NaCl) and drought (15% PEG 20000) stresses. The functional characterization of SlARF2 knockdown tomato mutants revealed that the downregulation of this gene enhanced primary root length and root branching and reduced plant wilting. At the physiological level, the arf2 mutant line displayed higher chlorophyll, soluble sugars, proline, and relative water contents as well as lower stomatal conductance and a decreased malondialdehyde content. Moreover, SlARF2 knockdown tomato mutants demonstrated higher activities of the antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT) under salt and drought stresses than the wild type. Indeed, the stress tolerance of the arf2 mutant was also reflected by the upregulation of stress-related genes involved in ROS scavenging and plant defense, including SOD, CAT, dehydration-responsive element-binding protein, and early responsive to dehydration, which can ultimately result in a better resistance to salt and drought stresses. Furthermore, the transcriptional levels of the Δ1-pyrroline-5-carboxylate synthase (P5CS) gene were upregulated in the arf2 mutant after stress, in correlation with the higher levels of proline. Taken together, our findings reveal that SlARF2 is implicated in salt and drought tolerance in tomato and provides some considerable elements for improving the abiotic stress tolerance and increasing the crop yields of tomato.

4.
3 Biotech ; 13(8): 287, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37520340

RESUMEN

Salinity is one of the most significant environmental factors limiting legumes development and productivity. Salt stress disturbs all developmental stages of legumes and affects their hormonal regulation, photosynthesis and biological nitrogen fixation, causing nutritional imbalance, plant growth inhibition and yield losses. At the molecular level, salt stress exposure involves large number of factors that are implicated in stress perception, transduction, and regulation of salt responsive genes' expression through the intervention of transcription factors. Along with the complex gene network, epigenetic regulation mediated by non-coding RNAs, and DNA methylation events are also involved in legumes' response to salinity. Different alleviation strategies can increase salt tolerance in legume plants. The most promising ones are Plant Growth Promoting Rhizobia, Arbuscular Mycorrhizal Fungi, seed and plant's priming. Genetic manipulation offers an effective approach for improving salt tolerance. In this review, we present a detailed overview of the adverse effect of salt stress on legumes and their molecular responses. We also provide an overview of various ameliorative strategies that have been implemented to mitigate/overcome the harmful effects of salt stress on legumes.

5.
Front Plant Sci ; 14: 1250728, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38169825

RESUMEN

Introduction: Increasing global warming has made heat stress a serious threat to crop productivity and global food security in recent years. One of the most promising solutions to address this issue is developing heat-stress-tolerant plants. Hence, a thorough understanding of heat stress response mechanisms, particularly molecular ones, is crucial. Methods: Although numerous studies have used microarray expression profiling technology to explore this area, these experiments often face limitations, leading to inconsistent results. To overcome these limitations, a random effects meta-analysis was employed using advanced statistical methods. A meta-analysis of 16 microarray datasets related to heat stress response in Arabidopsis thaliana was conducted. Results: The analysis revealed 1,972 significant differentially expressed genes between control and heat-stressed plants (826 over-expressed and 1,146 down-expressed), including 128 differentially expressed transcription factors from different families. The most significantly enriched biological processes, molecular functions, and KEGG pathways for over-expressed genes included heat response, mRNA splicing via spliceosome pathways, unfolded protein binding, and heat shock protein binding. Conversely, for down-expressed genes, the most significantly enriched categories included cell wall organization or biogenesis, protein phosphorylation, transmembrane transporter activity, ion transmembrane transporter, biosynthesis of secondary metabolites, and metabolic pathways. Discussion: Through our comprehensive meta-analysis of heat stress transcriptomics, we have identified pivotal genes integral to the heat stress response, offering profound insights into the molecular mechanisms by which plants counteract such stressors. Our findings elucidate that heat stress influences gene expression both at the transcriptional phase and post-transcriptionally, thereby substantially augmenting our comprehension of plant adaptive strategies to heat stress.

6.
J Fungi (Basel) ; 8(10)2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-36294652

RESUMEN

By dint of the development of agroecological practices and organic farming, stakeholders are becoming more and more aware of the importance of soil life and banning a growing number of pesticide molecules, promoting the use of plant bio-stimulants. To justify and promote the use of microbes in agroecological practices and sustainable agriculture, a number of functions or services often are invoked: (i) soil health, (ii) plant growth promotion, (iii) biocontrol, (iv) nutrient acquiring, (v) soil carbon storage, etc. In this paper, a review and a hierarchical classification of plant fungal partners according to their ecosystemic potential with regard to the available technologies aiming at field uses will be discussed with a particular focus on interactive microbial associations and functions such as Mycorrhiza Helper Bacteria (MHB) and nurse plants.

7.
Curr Issues Mol Biol ; 44(10): 4658-4675, 2022 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-36286033

RESUMEN

Lead (Pb) contamination is a widespread environmental problem due to its toxicity to living organisms. Hirschfeldia incana L., a member of the Brassicaceae family, commonly found in the Mediterranean regions, is characterized by its ability to tolerate and accumulate Pb in soils and hydroponic cultures. This plant has been reported as an excellent model to assess the response of plants to Pb. However, the lack of genomic data for H. incana hinders research at the molecular level. In the present study, we carried out RNA deep transcriptome sequencing (RNA-seq) of H. incana under two conditions, control without Pb(NO3)2 and treatment with 100 µM of Pb(NO3)2 for 15 days. A total of 797.83 million reads were generated using Illumina sequencing technology. We assembled 77,491 transcript sequences with an average length of 959 bp and N50 of 1330 bp. Sequence similarity analyses and annotation of these transcripts were performed against the Arabidopsis thaliana nr protein database, Gene Ontology (GO), and KEGG databases. As a result, 13,046 GO terms and 138 KEGG maps were created. Under Pb stress, 577 and 270 genes were differentially expressed in roots and aboveground parts, respectively. Detailed elucidation of regulation of metal transporters, transcription factors (TFs), and plant hormone genes described the role of actors that allow the plant to fine-tune Pb stress responses. Our study revealed that several genes related to jasmonic acid biosynthesis and alpha-linoleic acid were upregulated, suggesting these components' implication in Hirschfeldia incana L responses to Pb stress. This study provides data for further genomic analyses of the biological and molecular mechanisms leading to Pb tolerance and accumulation in Hirschfeldia incana L.

8.
Front Nutr ; 9: 857469, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35495922

RESUMEN

High temperature during the reproductive stage limits the growth and development of lentil (Lens culinaris Medikus). The reproductive and seed filling periods are the most sensitive to heat stress, resulting in limited yield and nutritional quality. Climate change causes frequent incidents of heat stress for global food crop production. This study aimed to assess the impact of high temperature during the reproductive stage of lentil on grain yield, nutritional value, and cooking quality. Thirty-six lentil genotypes were evaluated under controlled conditions for their high temperature response. Genotypic variation was significant (p < 0.001) for all the traits under study. High temperature-induced conditions reduced protein, iron (Fe) and zinc (Zn) concentrations in lentils. Under heat stress conditions, mineral concentrations among lentil genotypes varied from 6.0 to 8.8 mg/100 g for Fe and from 4.9 to 6.6 mg/100 g for Zn. Protein ranged from 21.9 to 24.3 g/100 g. Cooking time was significantly reduced due to high temperature treatment; the range was 3-11 min, while under no stress conditions, cooking time variation was from 5 to 14 min. Phytic acid variation was 0.5-1.2 g/100 g under no stress conditions, while under heat stress conditions, phytic acid ranged from 0.4 to 1.4 g/100 g. All genotypes had highly significant bioavailable Fe and moderately bioavailable Zn under no stress conditions. Whereas under heat stress conditions, Fe and Zn bioavailability was reduced due to increased phytic acid levels. Our results will greatly benefit the development of biofortified lentil cultivars for global breeding programs to generate promising genotypes with low phytic acid and phytic acid/micronutrient ratio to combat micronutrient malnutrition.

9.
Plants (Basel) ; 11(2)2022 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-35050067

RESUMEN

The abandoned Kettara pyrrhotite mine (Marrakech region, Morocco) is a real source of acid mine drainage (AMD) and heavy metal pollution from previous mining operations-which has spread, particularly because of wind erosion. A store-and-release cover system made of phosphate wastes was built on the site for preventing AMD. To ensure the integrity of this cover and its durability, it is desirable to revegetate it (phytostabilization) with plants adapted to the edaphoclimatic conditions of the region. In this paper, a study was carried out on the spontaneous vegetation around the phosphate cover in order to consider the selection of plants to promote the stabilization of the Kettara mine tailings pond. Nine species of native plants with their rhizospheric soils growing in agricultural soils and tailings from the Kettara mine were collected, and metals (As, Cd, Co, Cu, Pb, Zn, Ni, Cr) were analyzed. The soil analysis showed that the tailings contained high concentrations of Cu (177.64 mg/kg) and Pb (116.80 mg/kg) and that the agricultural soil contained high concentrations of As (25.07 mg/kg) and Cu (251.96 mg/kg) exceeding the toxicity level (Cu > 100 mg/kg, Pb > 100 mg/kg, As > 20 mg/kg). The plant analysis showed low trace metal accumulation in Scolymus hispanicus, Festuca ovina, Cleome brachycarpa, Carlina involucrata and Peganum harmala. These species had a bioconcentration factor (BCF) greater than 1 and a translocation factor (TF) less than 1, demonstrating a high tolerance to trace metals. Therefore, they are good candidates for use in the phytoremediation of the Kettara mine tailings. These species could also potentially be used for the phytostabilization of the phosphate waste cover of the Kettara mine, thus completing the rehabilitation process of this area.

10.
Int J Phytoremediation ; 24(1): 34-46, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34000939

RESUMEN

Microalgae have been studied for their potential of wastewater treatment as well as a promising source for biodiesel production. This study investigates the potential of microalgae to remove nutrients from domestic wastewater (DWW) while producing lipids-rich biomass for biodiesel production. Eight microalgae were cultivated in (DWW) to evaluate their nutrients removal capacity and biomass production. Total phosphorus (TP) of DWW reduced from 2 mg L-1 to 0.02 mg L-1 with the treatment efficiency of 99.15% and the highest performance was noted in Chlamydomonas reinhardtii (C. reinhardtii). For total nitrogen (TN), treatment efficiency climbed to 99.07%. It is reduced from 18.35 to 0.17 mg L-1 recorded in C. reinhardtii and Chlorella pyrenoidosa (C. pyrenoidosa). On the other hand, all microalgae showed a high lipids-rich biomass in wastewater compared to BG11. The highest lipid content was 36.93% noted in Chlorella sorokiniana (C. sorokiniana). Fatty acids methyl ester (FAME) profiles showed a high content of palmitic C16:0, oleic C18:1 and stearic acids C18:0 in studied microalgae strains. In summary, microalgae envisage its potential application in integrated wastewater treatment and biodiesel production. In perspective, the authors focus on the validation of this bioprocess in pilot scale. Furthermore, the use of microalgae for other applications such CO2 biosequestration and added value products. Novelty statement: The present study investigates the potential of Moroccan microalgae as candidates to wastewater remediation and high biomass production with high lipid rate for biodiesel production.


Asunto(s)
Chlorella , Microalgas , Purificación del Agua , Biodegradación Ambiental , Biocombustibles , Biomasa , Nitrógeno/análisis , Aguas Residuales
11.
Plants (Basel) ; 10(5)2021 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-33946966

RESUMEN

The abandoned Kettara pyrrhotite mine, located near Marrakech, Morocco, is an acid mine drainage (AMD) producer site. A store-and-release cover system made of phosphate wastes was built to prevent water infiltration and the formation of AMD. This cover system should be vegetated with appropriate plants to ensure its long-term sustainability and allow its reintegration in the surrounding ecosystem. Several indigenous plant species were studied. The choice of plant species was based mainly on their tolerance to trace elements contained in the phosphate wastes, and their low capacity to translocate these metals to their aboveground parts in order to limit the risk of pollutants transfer along the food chain. The main metals and metalloids (As, Cd, Co, Cu, Pb, Zn, Ni, Cr) are determined in 13 dominant plants naturally colonizing the store-and-release cover and their rhizospheric soils. The results showed that the phosphate cover contained high concentrations of Cr (138.04 mg/kg), Cu (119.86 mg/kg) and Cd (10.67 mg/kg) exceeding the regulatory thresholds values (Cr > 100 mg/kg, Cu > 100 mg/kg, Cd > 3 mg/kg). The studied plants revealed no hyper-accumulation of metals and metalloids, and lower concentrations in shoots than in roots. Six species (Plantago afra, Festuca ovina, Aizoon hispanicum, Herniaria cinerea, Echium plantagineum and Asphodelus tenuifolius) have bioconcentration factors greater than 1, and weak translocation factors, identifying them as appropriate candidates for phytostabilization of the phosphate cover.

12.
Plants (Basel) ; 11(1)2021 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-35009098

RESUMEN

High temperature and water deficit are among the major limitations reducing lentil (Lens culinaris Medik.) yield in many growing regions. In addition, increasing atmospheric vapor pressure deficit (VPD) due to global warming causes a severe challenge by influencing the water balance of the plants, thus also affecting growth and yield. In the present study, we evaluated 20 lentil genotypes under field conditions and controlled environments with the following objectives: (i) to investigate the impact of temperature stress and combined temperature-drought stress on traits related to phenology, grain yield, nutritional quality, and canopy temperature under field conditions, and (ii) to examine the genotypic variability for limited transpiration (TRlim) trait in response to increased VPD under controlled conditions. The field experiment results revealed that high-temperature stress significantly affected all parameters compared to normal conditions. The protein content ranged from 23.4 to 31.9%, while the range of grain zinc and iron content varied from 33.1 to 64.4 and 62.3 to 99.3 mg kg-1, respectively, under normal conditions. The grain protein content, zinc and iron decreased significantly by 15, 14 and 15% under high-temperature stress, respectively. However, the impact was more severe under combined temperature-drought stress with a reduction of 53% in protein content, 18% in zinc and 20% in iron. Grain yield declined significantly by 43% in temperature stress and by 49% in the combined temperature-drought stress. The results from the controlled conditions showed a wide variation in TR among studied lentil genotypes. Nine genotypes displayed TRlim at 2.76 to 3.51 kPa, with the genotypes ILL 7833 and ILL 7835 exhibiting the lowest breakpoint. Genotypes with low breakpoints had the ability to conserve water, allowing it to be used at later stages for increased yield. Our results identified promising genotypes including ILL 7835, ILL 7814 and ILL 4605 (Bakria) that could be of great interest in breeding for high yields, protein and micronutrient contents under high-temperature and drought stress. In addition, it was found that the TRlim trait has the potential to select for increased lentil yields under field water-deficit environments.

13.
Front Nutr ; 7: 596307, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33330596

RESUMEN

Lentil (Lens culinaris Medikus) is a protein-rich cool-season food legume with an excellent source of protein, prebiotic carbohydrates, minerals, and vitamins. With climate change, heat, and drought stresses have become more frequent and intense in lentil growing areas with a strong influence on phenology, grain yield, and nutritional quality. This study aimed to assess the impact of heat and drought stresses on phenology, grain yield, and nutritional quality of lentil. For this purpose, 100 lentil genotypes from the global collection were evaluated under normal, heat, and combined heat-drought conditions. Analysis of variance revealed significant differences (p < 0.001) among lentil genotypes for phenological traits, yield components, and grain quality traits. Under no stress conditions, mineral concentrations among lentil genotypes varied from 48 to 109 mg kg-1 for iron (Fe) and from 31 to 65 mg kg-1 for zinc (Zn), while crude protein content ranged from 22.5 to 32.0%. Iron, zinc, and crude protein content were significantly reduced under stress conditions, and the effect of combined heat-drought stress was more severe than heat stress alone. A significant positive correlation was observed between iron and zinc concentrations under both no stress and stress conditions. Based on grain yield, crude protein, and iron and zinc concentrations, lentil genotypes were grouped into three clusters following the hierarchical cluster analysis. Promising lentil genotypes with high micronutrient contents, crude protein, and grain yield with the least effect of heat and drought stress were identified as the potential donors for biofortification in the lentil breeding program.

14.
Plants (Basel) ; 9(11)2020 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-33137928

RESUMEN

Screening of native plant species from mining sites can lead to identify suitable plants for phytoremediation approaches. In this study, we assayed heavy metals tolerance and accumulation in native and dominant plants growing on abandoned Pb/Zn mining site in eastern Morocco. Soil samples and native plants were collected and analyzed for As, Cd, Cu, Ni, Sb, Pb, and Zn concentrations. Bioconcentration factor (BCF), translocation factor (TF), and biological accumulation coefficient (BAC) were determined for each element. Our results showed that soils present low organic matter content combined with high levels of heavy metals especially Pb and Zn due to past extraction activities. Native and dominant plants sampled in these areas were classified into 14 species and eight families. Principal components analysis separated Artemisia herba-alba with high concentrations of As, Cd, Cu, Ni, and Pb in shoots from other species. Four plant species, namely, Reseda alba, Cistus libanotis, Stipa tenacissima, and Artemisia herba-alba showed strong capacity to tolerate and hyperaccumulate heavy metals, especially Pb, in their tissues. According to BCF, TF, and BAC, these plant species could be used as effective plants for Pb phytoextraction. Stipa tenacissima and Artemisia herba-alba are better suited for phytostabilization of Cd/Cu and Cu/Zn, respectively. Our study shows that several spontaneous and native plants growing on Pb/Zn contaminated sites have a good potential for developing heavy metals phytoremediation strategies.

15.
Plants (Basel) ; 9(5)2020 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-32365483

RESUMEN

Zinc is an essential microelement involved in many aspects of plant growth and development. Abnormal zinc amounts, mostly due to human activities, can be toxic to flora, fauna, and humans. In plants, excess zinc causes morphological, biochemical, and physiological disorders. Some plants have the ability to resist and even accumulate zinc in their tissues. To date, 28 plant species have been described as zinc hyperaccumulators. These plants display several morphological, physiological, and biochemical adaptations resulting from the activation of molecular Zn hyperaccumulation mechanisms. These adaptations can be varied between species and within populations. In this review, we describe the physiological and biochemical as well as molecular mechanisms involved in zinc hyperaccumulation in plants.

16.
Genes (Basel) ; 11(3)2020 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-32138192

RESUMEN

Auxin controls multiple aspects of plant growth and development. However, its role in stress responses remains poorly understood. Auxin acts on the transcriptional regulation of target genes, mainly through Auxin Response Factors (ARF). This study focuses on the involvement of SlARF4 in tomato tolerance to salinity and osmotic stress. Using a reverse genetic approach, we found that the antisense down-regulation of SlARF4 promotes root development and density, increases soluble sugars content and maintains chlorophyll content at high levels under stress conditions. Furthermore, ARF4-as displayed higher tolerance to salt and osmotic stress through reduced stomatal conductance coupled with increased leaf relative water content and Abscisic acid (ABA) content under normal and stressful conditions. This increase in ABA content was correlated with the activation of ABA biosynthesis genes and the repression of ABA catabolism genes. Cu/ZnSOD and mdhar genes were up-regulated in ARF4-as plants which can result in a better tolerance to salt and osmotic stress. A CRISPR/Cas9 induced SlARF4 mutant showed similar growth and stomatal responses as ARF4-as plants, which suggest that arf4-cr can tolerate salt and osmotic stresses. Our data support the involvement of ARF4 as a key factor in tomato tolerance to salt and osmotic stresses and confirm the use of CRISPR technology as an efficient tool for functional reverse genetics studies.


Asunto(s)
Proteínas de Plantas/genética , Estrés Salino/genética , Tolerancia a la Sal/genética , Solanum lycopersicum/genética , Ácido Abscísico/metabolismo , Sistemas CRISPR-Cas/genética , Regulación de la Expresión Génica de las Plantas/genética , Solanum lycopersicum/crecimiento & desarrollo , Presión Osmótica/fisiología , Desarrollo de la Planta/genética , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Salinidad
17.
PLoS One ; 13(2): e0193517, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29489914

RESUMEN

Survival biomass production and crop yield are heavily constrained by a wide range of environmental stresses. Several phytohormones among which abscisic acid (ABA), ethylene and salicylic acid (SA) are known to mediate plant responses to these stresses. By contrast, the role of the plant hormone auxin in stress responses remains so far poorly studied. Auxin controls many aspects of plant growth and development, and Auxin Response Factors play a key role in the transcriptional activation or repression of auxin-responsive genes through direct binding to their promoters. As a mean to gain more insight on auxin involvement in a set of biotic and abiotic stress responses in tomato, the present study uncovers the expression pattern of SlARF genes in tomato plants subjected to biotic and abiotic stresses. In silico mining of the RNAseq data available through the public TomExpress web platform, identified several SlARFs as responsive to various pathogen infections induced by bacteria and viruses. Accordingly, sequence analysis revealed that 5' regulatory regions of these SlARFs are enriched in biotic and abiotic stress-responsive cis-elements. Moreover, quantitative qPCR expression analysis revealed that many SlARFs were differentially expressed in tomato leaves and roots under salt, drought and flooding stress conditions. Further pointing to the putative role of SlARFs in stress responses, quantitative qPCR expression studies identified some miRNA precursors as potentially involved in the regulation of their SlARF target genes in roots exposed to salt and drought stresses. These data suggest an active regulation of SlARFs at the post-transcriptional level under stress conditions. Based on the substantial change in the transcript accumulation of several SlARF genes, the data presented in this work strongly support the involvement of auxin in stress responses thus enabling to identify a set of candidate SlARFs as potential mediators of biotic and abiotic stress responses.


Asunto(s)
Ácidos Indolacéticos/metabolismo , Proteínas de Plantas/metabolismo , Solanum lycopersicum/metabolismo , Estrés Fisiológico , Sequías , Inundaciones , Perfilación de la Expresión Génica , Solanum lycopersicum/efectos de los fármacos , Solanum lycopersicum/genética , Solanum lycopersicum/fisiología , MicroARNs/genética , Proteínas de Plantas/genética , Regiones Promotoras Genéticas/genética , Sales (Química)/farmacología , Estrés Fisiológico/efectos de los fármacos , Estrés Fisiológico/genética
18.
ScientificWorldJournal ; 2018: 6834725, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30622443

RESUMEN

Nitrogen stress increases lipids content in microalgae, the main feedstock for algal biodiesel. Sodium tungstate was used in this study to implement nitrogen stress by inhibiting nitrate reductase (NR) in Dunaliella tertiolecta. The reduction of NR activity was accompanied by reduction of chlorophyll and accumulation of lipids. One-stage and two-stage culture strategies were compared. One-stage culture raised total lipids from 18% (control) to 39% (w: w); however, two-stage culture raised lipids to 50% in which neutral lipids were enhanced 2.14 times. To assess the quality of biodiesel produced, fatty acid methyl esters (FAME) composition was studied. It showed a slight variation of unsaturation. In addition, some physical proprieties of biodiesel were estimated and showed that higher heating values were improved by tungstate treatment. In this study, we tried to shed light on some biological impact of NR inhibition in microalgae cells using sodium tungstate which could be exploited in the improvement of biodiesel production.

19.
Plant J ; 92(4): 727-735, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28873253

RESUMEN

The TomExpress platform was developed to provide the tomato research community with a browser and integrated web tools for public RNA-Seq data visualization and data mining. To avoid major biases that can result from the use of different mapping and statistical processing methods, RNA-Seq raw sequence data available in public databases were mapped de novo on a unique tomato reference genome sequence and post-processed using the same pipeline with accurate parameters. Following the calculation of the number of counts per gene in each RNA-Seq sample, a communal global normalization method was applied to all expression values. This unifies the whole set of expression data and makes them comparable. A database was designed where each expression value is associated with corresponding experimental annotations. Sample details were manually curated to be easily understandable by biologists. To make the data easily searchable, a user-friendly web interface was developed that provides versatile data mining web tools via on-the-fly generation of output graphics, such as expression bar plots, comprehensive in planta representations and heatmaps of hierarchically clustered expression data. In addition, it allows for the identification of co-expressed genes and the visualization of correlation networks of co-regulated gene groups. TomExpress provides one of the most complete free resources of publicly available tomato RNA-Seq data, and allows for the immediate interrogation of transcriptional programs that regulate vegetative and reproductive development in tomato under diverse conditions. The design of the pipeline developed in this project enables easy updating of the database with newly published RNA-Seq data, thereby allowing for continuous enrichment of the resource.


Asunto(s)
Minería de Datos , Bases de Datos Genéticas , Genoma de Planta/genética , ARN de Planta/genética , Solanum lycopersicum/genética , Navegador Web , Análisis por Conglomerados , Internet , Análisis de Secuencia de ARN
20.
Front Plant Sci ; 6: 1231, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26793211

RESUMEN

Hirschfeldia incana, a pseudometallophyte belonging to the Brassicaceae family and widespread in the Mediterranean region, was selected for its ability to grow on soils contaminated by lead (Pb). The global comparison of gene expression using microarrays between a plant susceptible to Pb (Arabidopsis thaliana) and a Pb tolerant plant (H. incana) enabled the identification of a set of specific genes expressed in response to lead exposure. Three groups of genes were particularly over-represented by the Pb exposure in the biological processes categorized as photosynthesis, cell wall, and metal handling. Each of these gene groups was shown to be directly involved in tolerance or in protection mechanisms to the phytotoxicity associated with Pb. Among these genes, we demonstrated that MT2b, a metallothionein gene, was involved in lead accumulation, confirming the important role of metallothioneins in the accumulation and the distribution of Pb in leaves. On the other hand, several genes involved in biosynthesis of ABA were shown to be up-regulated in the roots and shoots of H. incana treated with Pb, suggesting that ABA-mediated signaling is a possible mechanism in response to Pb treatment in H. incana. This latest finding is an important research direction for future studies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...