Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Oncol ; 12: 931294, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36033446

RESUMEN

The future of radiation oncology is exceptionally strong as we are increasingly involved in nearly all oncology disease sites due to extraordinary advances in radiation oncology treatment management platforms and improvements in treatment execution. Due to our technology and consistent accuracy, compressed radiation oncology treatment strategies are becoming more commonplace secondary to our ability to successfully treat tumor targets with increased normal tissue avoidance. In many disease sites including the central nervous system, pulmonary parenchyma, liver, and other areas, our service is redefining the standards of care. Targeting of disease has improved due to advances in tumor imaging and application of integrated imaging datasets into sophisticated planning systems which can optimize volume driven plans created by talented personnel. Treatment times have significantly decreased due to volume driven arc therapy and positioning is secured by real time imaging and optical tracking. Normal tissue exclusion has permitted compressed treatment schedules making treatment more convenient for the patient. These changes require additional study to further optimize care. Because data exchange worldwide have evolved through digital platforms and prisms, images and radiation datasets worldwide can be shared/reviewed on a same day basis using established de-identification and anonymization methods. Data storage post-trial completion can co-exist with digital pathomic and radiomic information in a single database coupled with patient specific outcome information and serve to move our translational science forward with nimble query elements and artificial intelligence to ask better questions of the data we collect and collate. This will be important moving forward to validate our process improvements at an enterprise level and support our science. We have to be thorough and complete in our data acquisition processes, however if we remain disciplined in our data management plan, our field can grow further and become more successful generating new standards of care from validated datasets.

2.
IEEE Trans Nucl Sci ; 63(1): 117-129, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27182079

RESUMEN

The objectives of this investigation were to model the respiratory motion of solitary pulmonary nodules (SPN) and then use this model to determine the impact of respiratory motion on the localization and detection of small SPN in SPECT imaging for four reconstruction strategies. The respiratory motion of SPN was based on that of normal anatomic structures in the lungs determined from breath-held CT images of a volunteer acquired at two different stages of respiration. End-expiration (EE) and time-averaged (Frame Av) non-uniform-B-spline cardiac torso (NCAT) digital-anthropomorphic phantoms were created using this information for respiratory motion within the lungs. SPN were represented as 1 cm diameter spheres which underwent linear motion during respiration between the EE and end-inspiration (EI) time points. The SIMIND Monte Carlo program was used to produce SPECT projection data simulating Tc-99m depreotide (NeoTect) imaging. The projections were reconstructed using 1) no correction (NC), 2) attenuation correction (AC), 3) resolution compensation (RC), and 4) attenuation correction, scatter correction, and resolution compensation (AC_SC_RC). A human-observer localization receiver operating characteristics (LROC) study was then performed to determine the difference in localization and detection accuracy with and without the presence of respiratory motion. The LROC comparison determined that respiratory motion degrades tumor detection for all four reconstruction strategies, thus correction for SPN motion would be expected to improve detection accuracy. The inclusion of RC in reconstruction improved detection accuracy for both EE and Frame Av over NC and AC. Also the magnitude of the impact of motion was least for AC_SC_RC.

3.
IEEE Trans Nucl Sci ; 63(1): 130-139, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27182080

RESUMEN

The objective of this investigation was to determine the effectiveness of three motion reducing strategies in diminishing the degrading impact of respiratory motion on the detection of small solitary pulmonary nodules (SPN) in single photon emission computed tomographic (SPECT) imaging in comparison to a standard clinical acquisition and the ideal case of imaging in the absence of respiratory motion. To do this non-uniform rational B-spline cardiac-torso (NCAT) phantoms based on human-volunteer CT studies were generated spanning the respiratory cycle for a normal background distribution of Tc-99m NeoTect. Similarly, spherical phantoms of 1.0 cm diameter were generated to model small SPN for each of 150 uniquely located sites within the lungs whose respiratory motion was based on the motion of normal structures in the volunteer CT studies. The SIMIND Monte Carlo program was used to produce SPECT projection data from these. Normal and single-lesion containing SPECT projection sets with a clinically realistic Poisson noise level were created for the cases of: 1) the end-expiration (EE) frame with all counts, 2) respiration-averaged motion with all counts, 3) one-fourth of the 32 frames centered around EE (Quarter-Binning), 4) one-half of the 32 frames centered around EE (Half-Binning), and 5) eight temporally binned frames spanning the respiratory cycle. Each of the sets of combined projection data were reconstructed with RBI-EM with system spatial-resolution compensation (RC). Based on the known motion for each of the 150 different lesions, the reconstructed volumes of respiratory bins were shifted so as to superimpose the locations of the SPN onto that in the first bin (Reconstruct and Shift). Five human-observers performed localization receiver operating characteristics (LROC) studies of SPN detection. The observer results were analyzed for statistical significance differences in SPN detection accuracy among the three correction strategies, the standard acquisition, and the ideal case of the absence of respiratory motion. Our human-observer LROC determined that Quarter-Binning and Half-Binning strategies resulted in SPN detection accuracy statistically significantly below (P < 0.05) that of standard clinical acquisition, whereas the Reconstruct and Shift strategy resulted in a detection accuracy not statistically significantly different from that of the ideal case. This investigation demonstrates that tumor detection based on acquisitions associated with less than all the counts which could potentially be employed may result in poorer detection despite limiting the motion of the lesion. The Reconstruct and Shift method results in tumor detection that is equivalent to ideal motion correction.

4.
IEEE Trans Nucl Sci ; 56(6): 3662-3671, 2009 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-20419041

RESUMEN

The goal of this work is to investigate, for a large set of patients, the motion of the heart with respiration during free-breathing supine medical imaging. For this purpose we analyzed the motion of the heart in 32 non-contrast enhanced respiratory-gated 4D-CT datasets acquired during quiet unconstrained breathing. The respiratory-gated CT images covered the cardiac region and were acquired at each of 10 stages of the respiratory cycle, with the first stage being end-inspiration. We devised a 3-D semi-automated segmentation algorithm that segments the heart in the 4D-CT datasets acquired without contrast enhancement for use in estimating respiratory motion of the heart. Our semi-automated segmentation results were compared against interactive hand segmentations of the coronal slices by a cardiologist and a radiologist. The pairwise difference in segmentation among the algorithm and the physicians was on the average 11% and 10% of the total average segmented volume across the patient, with a couple of patients as outliers above the 95% agreement limit. The mean difference among the two physicians was 8% with an outlier above the 95% agreement limit. The 3-D segmentation was an order of magnitude faster than the Physicians' manual segmentation and represents significant reduction of Physicians' time. The segmented first stages of respiration were used in 12 degree-of-freedom (DOF) affine registration to estimate the motion at each subsequent stage of respiration. The registration results from the 32 patients indicate that the translation in the superior-inferior direction was the largest component motion, with a maximum of 10.7 mm, mean of 6.4 mm, and standard deviation of 2.2 mm. Translation in the anterior-posterior direction was the next largest component of motion, with a maximum of 4.0 mm, mean of 1.7 mm, and standard deviation of 1.0 mm. Rotation about the right-left axis was on average the largest component of rotation observed, with a maximum of 4.6 degrees, mean of 1.6 degrees, and standard deviation of 2.1 degrees. The other rotation and shear parameters were all close to zero on average indicting the motion could be reasonably well approximated by rigid-body motion. However, the product of the three scale factors averaged about 0.97 indicating the possibility of a small decrease in heart volume with expiration. The motion results were similar whether we used the Physician's segmentation or the 3-D algorithm.

5.
Med Phys ; 35(11): 4808-15, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19070213

RESUMEN

Using psychophysical studies, the authors have evaluated the effectiveness of various strategies for compensating for physical degradations in SPECT imaging. The particular application was Ga-67-citrate imaging of mediastinal tumors, which was chosen because Ga-67 is a particularly challenging radionuclide for imaging. The test strategies included compensations for nonuniform attenuation, distance-dependent spatial resolution, and scatter applied in various combinations as part of iterative reconstructions with the rescaled block iterative-expectation maximization (RBI-EM) algorithm. The authors also evaluated filtered backprojection reconstructions. Strategies were compared on the basis of human-observer studies of lesion localization and detection accuracy using the localization receiver operating characteristics (LROC) paradigm. These studies involved hybrid images which were obtained by adding the projections of Monte Carlo-simulated lesions to disease-free clinical projection data. The background variability in these images can provide a more realistic assessment of the relative utility of reconstruction strategies than images from anthropomorphic digital phantoms. The clinical datasets were obtained using a GE-VG dual-detector SPECT system with CT-estimated attenuation maps. After determining a target lesion contrast, they conducted pilot LROC studies to obtain a near-optimal set of reconstruction parameters for each strategy, and then conducted the strategy comparison study. The results indicate improved detection accuracy with RBI-EM as more compensations are applied within the reconstruction. The relative rankings of the test strategies agreed in most cases with those of previous studies that employed simulated projections of digital anthropomorphic phantoms, thus confirming the findings of those studies.


Asunto(s)
Radioisótopos de Galio , Procesamiento de Imagen Asistido por Computador/métodos , Neoplasias del Mediastino/diagnóstico por imagen , Tomografía Computarizada de Emisión de Fotón Único/métodos , Algoritmos , Análisis de Varianza , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...