Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Brain Commun ; 5(2): fcad093, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37033334

RESUMEN

Poor maternal nutrition during pregnancy is known to impair fetal development. Moreover, the preimplantation period is vulnerable to adverse programming of disease. Here, we investigated the effect of a mouse maternal high-fat diet in healthy non-obese dams during preimplantation or throughout pregnancy and lactation on metabolism-related parameters and hippocampal neurogenesis in adult offspring. Female mice were fed from conception either a normal fat diet (normal fat diet group) or high-fat diet throughout gestation and lactation (high-fat diet group), or high-fat diet only during preimplantation (embryonic high-fat diet group, high-fat diet up to E3.5, normal fat diet thereafter). Maternal high-fat diet caused changes in the offspring, including increased systolic blood pressure, diurnal activity, respiratory quotient, and energy expenditure in high-fat diet females, and increased systolic blood pressure and respiratory quotient but decreased energy expenditure in high-fat diet males. High-fat diet males had a higher density of newborn neurons and a lower density of mature neurons in the dentate gyrus, indicating that exposure to a maternal high-fat diet may regulate adult neurogenesis. A maternal high-fat diet also increased the density of astrocytes and microglia in the hippocampus of high-fat diet males and females. Generally, a graded response (normal fat diet < embryonic high-fat < high-fat diet) was observed, with only 3 days of high-fat diet exposure altering offspring energy metabolism and hippocampal cell density. Thus, early maternal exposure to a fatty diet, well before neural differentiation begins and independently of maternal obesity, is sufficient to perturb offspring energy metabolism and brain physiology with lifetime consequences.

2.
Front Physiol ; 14: 1099278, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37057180

RESUMEN

Stretch-induced vascular tone is an important element of autoregulatory adaptation of cerebral vasculature to maintain cerebral flow constant despite changes in perfusion pressure. Little is known as to the regulation of tone in senescent basilar arteries. We tested the hypothesis, that thin filament mechanisms in addition to smooth muscle myosin-II regulatory-light-chain-(MLC20)-phosphorylation and non-muscle-myosin-II, contribute to regulation of stretch-induced tone. In young BAs (y-BAs) mechanical stretch does not lead to spontaneous tone generation. Stretch-induced tone in y-BAs appeared only after inhibition of NO-release by L-NAME and was fully prevented by treatment with 3 µmol/L RhoA-kinase (ROK) inhibitor Y27632. L-NAME-induced tone was reduced in y-BAs from heterozygous mice carrying a point mutation of the targeting-subunit of the myosin phosphatase, MYPT1 at threonine696 (MYPT1-T696A/+). In y-BAs, MYPT1-T696A-mutation also blunted the ability of L-NAME to increase MLC20-phosphorylation. In contrast, senescent BAs (s-BAs; >24 months) developed stable spontaneous stretch-induced tone and pharmacological inhibition of NO-release by L-NAME led to an additive effect. In s-BAs the MYPT1-T696A mutation also blunted MLC20-phosphorylation, but did not prevent development of stretch-induced tone. In s-BAs from both lines, Y27632 completely abolished stretch- and L-NAME-induced tone. In s-BAs phosphorylation of non-muscle-myosin-S1943 and PAK1-T423, shown to be down-stream effectors of ROK was also reduced by Y27632 treatment. Stretch- and L-NAME tone were inhibited by inhibition of non-muscle myosin (NM-myosin) by blebbistatin. We also tested whether the substrate of PAK1 the thin-filament associated protein, caldesmon is involved in the regulation of stretch-induced tone in advanced age. BAs obtained from heterozygotes Cald1+/- mice generated stretch-induced tone already at an age of 20-21 months old BAs (o-BA). The magnitude of stretch-induced tone in Cald1+/- o-BAs was similar to that in s-BA. In addition, truncation of caldesmon myosin binding Exon2 (CaD-▵Ex2-/-) did not accelerate stretch-induced tone. Our study indicates that in senescent cerebral vessels, mechanisms distinct from MLC20 phosphorylation contribute to regulation of tone in the absence of a contractile agonist. While in y-and o-BA the canonical pathways, i.e., inhibition of MLCP by ROK and increase in pMLC20, predominate, tone regulation in senescence involves ROK regulated mechanisms, involving non-muscle-myosin and thin filament linked mechanisms involving caldesmon.

3.
Stem Cell Rev Rep ; 19(3): 767-783, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36517693

RESUMEN

Peri-conceptional environment can induce permanent changes in embryo phenotype which alter development and associate with later disease susceptibility. Thus, mouse maternal low protein diet (LPD) fed exclusively during preimplantation is sufficient to lead to cardiovascular, metabolic and neurological dysfunction in adult offspring. Embryonic stem cell (ESC) lines were generated from LPD and control NPD C57BL/6 blastocysts and characterised by transcriptomics, metabolomics, bioinformatics and molecular/cellular studies to assess early potential mechanisms in dietary environmental programming. Previously, we showed these lines retain cellular and epigenetic characteristics of LPD and NPD embryos after several passages. Here, three main changes were identified in LPD ESC lines. First, their derivation capacity was reduced but pluripotency marker expression was similar to controls. Second, LPD lines had impaired Mitogen-activated protein kinase (MAPK) pathway with altered gene expression of several regulators (e.g., Maff, Rassf1, JunD), reduced ERK1/2 signalling capacity and poorer cell survival characteristics which may contribute to reduced derivation. Third, LPD lines had impaired glucose metabolism comprising reduced upstream enzyme expression (e.g., Gpi, Mpi) and accumulation of metabolites (e.g., glucose-6-P, fructose-6-P) above the phosphofructokinase (PFK) gateway with PFK enzyme activity reduced. ESC lines may therefore permit investigation of peri-conceptional programming mechanisms with reduced need for animal experimentation.


Asunto(s)
Desnutrición , Células Madre Embrionarias de Ratones , Animales , Ratones , Ratones Endogámicos C57BL , Transducción de Señal , Dieta con Restricción de Proteínas
4.
J Dev Orig Health Dis ; 13(3): 395-405, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34193331

RESUMEN

Advanced maternal age (AMA) is known to reduce fertility, increases aneuploidy in oocytes and early embryos and leads to adverse developmental consequences which may associate with offspring lifetime health risks. However, investigating underlying effects of AMA on embryo developmental potential is confounded by the inherent senescence present in maternal body systems further affecting reproductive success. Here, we describe a new model for the analysis of early developmental mechanisms underlying AMA by the derivation and characterisation of mouse embryonic stem cell (mESC-like) lines from naturally conceived embryos. Young (7-8 weeks) and Old (7-8 months) C57BL/6 female mice were mated with young males. Preimplantation embryos from Old dams displayed developmental retardation in blastocyst morphogenesis. mESC lines established from these blastocysts using conventional techniques revealed differences in genetic, cellular and molecular criteria conserved over several passages in the standardised medium. mESCs from embryos from AMA dams displayed increased incidence of aneuploidy following Giemsa karyotyping compared with those from Young dams. Moreover, AMA caused an altered pattern of expression of pluripotency markers (Sox2, OCT4) in mESCs. AMA further diminished mESC survival and proliferation and reduced the expression of cell proliferation marker, Ki-67. These changes coincided with altered expression of the epigenetic marker, Dnmt3a and other developmental regulators in a sex-dependent manner. Collectively, our data demonstrate the feasibility to utilise mESCs to reveal developmental mechanisms underlying AMA in the absence of maternal senescence and with reduced animal use.


Asunto(s)
Blastocisto , Desarrollo Embrionario , Aneuploidia , Animales , Biomarcadores/metabolismo , Blastocisto/metabolismo , Células Madre Embrionarias , Femenino , Masculino , Edad Materna , Ratones , Ratones Endogámicos C57BL , Fenotipo
5.
Reproduction ; 162(4): 289-306, 2021 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-34338217

RESUMEN

The mouse preimplantation embryo is sensitive to its environment, including maternal dietary protein restriction, which can alter the developmental programme and affect lifetime health. Previously, we have shown maternal low-protein diet (LPD) causes a reduction in blastocyst mTORC1 signalling coinciding with reduced availability of branched-chain amino acids (BCAAs) in surrounding uterine fluid. BCAA deficiency leads to increased endocytosis and lysosome biogenesis in blastocyst trophectoderm (TE), a response to promote compensatory histotrophic nutrition. Here, we first investigated the induction mechanism by individual variation in BCAA deficiency in an in vitro quantitative model of TE responsiveness. We found isoleucine (ILE) deficiency as the most effective activator of TE endocytosis and lysosome biogenesis, with less potent roles for other BCAAs and insulin; cell volume was also influential. TE response to low ILE included upregulation of vesicles comprising megalin receptor and cathepsin-B, and the response was activated from blastocyst formation. Secondly, we identified the transcription factor TFEB as mediating the histotrophic response by translocation from cytoplasm to nucleus during ILE deficiency and in response to mTORC1 inhibition. Lastly, we investigated whether a similar mechanism responsive to maternal nutritional status was found in human blastocysts. Blastocysts from women with high body-mass index, but not the method of fertilisation, revealed stimulated lysosome biogenesis and TFEB nuclear migration. We propose TE lysosomal phenotype as an early biomarker of environmental nutrient stress that may associate with long-term health outcomes.


Asunto(s)
Blastocisto , Desarrollo Embrionario , Animales , Biomarcadores/metabolismo , Blastocisto/metabolismo , Dieta con Restricción de Proteínas/efectos adversos , Desarrollo Embrionario/fisiología , Femenino , Humanos , Fenómenos Fisiologicos Nutricionales Maternos , Ratones
6.
Hum Reprod ; 35(11): 2497-2514, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-33020802

RESUMEN

STUDY QUESTION: Do the long-term health outcomes following IVF differ depending upon the duration of embryo culture before transfer? SUMMARY ANSWER: Using a mouse model, we demonstrate that in male but not female offspring, adverse cardiovascular (CV) health was more likely with prolonged culture to the blastocyst stage, but metabolic dysfunction was more likely if embryo transfer (ET) occurred at the early cleavage stage. WHAT IS KNOWN ALREADY: ART associate with increased risk of adverse CV and metabolic health in offspring, and these findings have been confirmed in animal models in the absence of parental infertility issues. It is unclear which specific ART treatments may cause these risks. There is increasing use of blastocyst, versus cleavage-stage, transfer in clinical ART which does not appear to impair perinatal health of children born, but the longer-term health implications are unknown. STUDY DESIGN, SIZE, DURATION: Five mouse groups were generated comprising: (i) natural mating (NM)-naturally mated, non-superovulated and undisturbed gestation; (ii) IV-ET-2Cell-in-vivo derived two-cell embryos collected from superovulated mothers, with immediate ET to recipients; (iii) IVF-ET-2Cell-IVF generated embryos, from oocytes from superovulated mothers, cultured to the two-cell stage before ET to recipients; (iv) IV-ET-BL-in-vivo derived blastocysts collected from superovulated mothers, with immediate ET to recipients; (v) IVF-ET-BL-IVF generated embryos, from oocytes from superovulated mothers, cultured to the blastocyst stage before ET to recipients. Both male and female offspring were analysed for growth, CV and metabolic markers of health. There were 8-13 litters generated for each group for analyses; postnatal data were analysed by multilevel random effects regression to take account of between-mother and within-mother variation and litter size. PARTICIPANTS/MATERIALS, SETTINGS, METHODS: C57/BL6 female mice (3-4 weeks old) were used for oocyte production; CBA males for sperm with human tubal fluid medium were used for IVF. Embryos were transferred (ET) to MF1 pseudo-pregnant recipients at the two-cell stage or cultured in synthetic oviductal medium enriched with potassium medium to the blastocyst stage before ET. Control in-vivo embryos from C57BL6 × CBA matings were collected and immediately transferred at the two-cell or blastocyst stage. Postnatal assays included growth rate up to 27 weeks; systolic blood pressure (SBP) at 9, 15 and 21 weeks; lung and serum angiotensin-converting enzyme (ACE) activity at time of cull (27 weeks); glucose tolerance test (GTT; 27 weeks); basal glucose and insulin levels (27 weeks); and lipid accumulation in liver cryosections using Oil Red O imaging (27 weeks). MAIN RESULTS AND THE ROLE OF CHANCE: Blastocysts formed by IVF developed at a slower rate and comprised fewer cells that in-vivo generated blastocysts without culture (P < 0.05). Postnatal growth rate was increased in all four experimental treatments compared with NM group (P < 0.05). SBP, serum and lung ACE and heart/body weight were higher in IVF-ET-BL versus IVF-ET-2Cell males (P < 0.05) and higher than in other treatment groups, with SBP and lung ACE positively correlated (P < 0.05). Glucose handling (GTT AUC) was poorer and basal insulin levels were higher in IVF-ET-2Cell males than in IVF-ET-BL (P < 0.05) with the glucose:insulin ratio more negatively correlated with body weight in IVF-ET-2Cell males than in other groups. Liver/body weight and liver lipid droplet diameter and density in IVF-ET-2Cell males were higher than in IVF-ET-BL males (P < 0.05). IVF groups had poorer health characteristics than their in-vivo control groups, indicating that outcomes were not caused specifically by background techniques (superovulation, ET). No consistent health effects from duration of culture were identified in female offspring. LARGE SCALE DATA: N/A. LIMITATIONS, REASONS FOR CAUTION: Results from experimental animal models cannot be extrapolated to humans. Nevertheless, they are valuable to develop conceptual models, in this case, in the absence of confounding parental infertility, in assessing the safety of ART manipulations. WIDER IMPLICATIONS OF THE FINDINGS: The study indicates that longer duration of embryo culture after IVF up to blastocyst before ET leads to increased dysfunction of CV health in males compared with IVF and shorter cleavage-stage ET. However, the metabolic health of male offspring was poorer after shorter versus longer culture duration. This distinction indicates that the origin of CV and metabolic health phenotypes after ART may be different. The poorer metabolic health of males after cleavage-stage ET coincides with embryonic genome activation occurring at the time of ET. STUDY FUNDING/COMPETING INTEREST(S): This work was supported through the European Union FP7-CP-FP Epihealth programme (278418) and FP7-PEOPLE-2012-ITN EpiHealthNet programme (317146) to T.P.F., the Biotechnology and Biological Sciences Research Council (BBSRC) (BB/F007450/1) to T.P.F., and the Saudi government, University of Jeddah and King Abdulaziz University to A.A. The authors have no conflicts of interest to declare.


Asunto(s)
Blastocisto , Técnicas de Cultivo de Embriones , Animales , Transferencia de Embrión , Femenino , Fertilización In Vitro , Masculino , Ratones , Ratones Endogámicos CBA , Embarazo
7.
Small ; 14(12): e1703489, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29464860

RESUMEN

Wound healing is a highly complex biological process, which is accompanied by changes in cell phenotype, variations in protein expression, and the production of active biomolecules. Currently, the detection of proteins in cells is done by immunostaining where the proteins in fixed cells are detected by labeled antibodies. However, immunostaining cannot provide information about dynamic processes in living cells, within the whole tissue. Here, an easy method is presented to detect the transition of epithelial to mesenchymal cells during wound healing. The method employs DNA-coated gold nanoparticle fluorescent nanoprobes to sense the production of Vimentin mRNA expressed in mesenchymal cells. Fluorescence microscopy is used to achieve temporal detection of Vimentin mRNA in wounds. 3D light-sheet microscopy is utilized to observe the dynamic expression of Vimentin mRNA spatially around the wounded site in skin tissue. The use of DNA-gold nanoprobes to detect mRNA expression during wound healing opens up new possibilities for the study of real-time mechanisms in complex biological processes.


Asunto(s)
Nanopartículas del Metal/química , ARN Mensajero/química , Vimentina/química , Animales , ADN/análisis , ADN/química , Oro/química , ARN Mensajero/análisis , Piel/metabolismo , Cicatrización de Heridas/genética , Cicatrización de Heridas/fisiología
8.
Biochim Biophys Acta ; 1862(5): 1037-46, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26327684

RESUMEN

Deposition of amyloid ß (Aß) in the walls of cerebral arteries as cerebral amyloid angiopathy (CAA) suggests an age-related failure of perivascular drainage of soluble Aß from the brain. As CAA is associated with Alzheimer's disease and with intracerebral haemorrhage, the present study determines the unique sequence of changes that occur as Aß accumulates in artery walls. Paraffin sections of post-mortem human occipital cortex were immunostained for collagen IV, fibronectin, nidogen 2, Aß and smooth muscle actin and the immunostaining was analysed using Image J and confocal microscopy. Results showed that nidogen 2 (entactin) increases with age and decreases in CAA. Confocal microscopy revealed stages in the progression of CAA: Aß initially deposits in basement membranes in the tunica media, replaces first the smooth muscle cells and then the connective tissue elements to leave artery walls completely or focally replaced by Aß. The pattern of development of CAA in the human brain suggests expansion of Aß from the basement membranes to progressively replace all tissue elements in the artery wall. Establishing this full picture of the development of CAA is pivotal in understanding the clinical presentation of CAA and for developing therapies to prevent accumulation of Aß in artery walls. This article is part of a Special Issue entitled: Vascular Contributions to Cognitive Impairment and Dementia edited by M. Paul Murphy, Roderick A. Corriveau and Donna M. Wilcock.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Angiopatía Amiloide Cerebral/patología , Arterias Cerebrales/patología , Adulto , Anciano , Anciano de 80 o más Años , Péptidos beta-Amiloides/análisis , Membrana Basal/metabolismo , Membrana Basal/patología , Encéfalo/irrigación sanguínea , Encéfalo/metabolismo , Encéfalo/patología , Angiopatía Amiloide Cerebral/metabolismo , Arterias Cerebrales/metabolismo , Femenino , Humanos , Masculino , Persona de Mediana Edad , Túnica Media/metabolismo , Túnica Media/patología , Adulto Joven
9.
Cancer Cell ; 27(4): 473-88, 2015 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-25873171

RESUMEN

Therapeutic antibodies have transformed cancer therapy, unlocking mechanisms of action by engaging the immune system. Unfortunately, cures rarely occur and patients display intrinsic or acquired resistance. Here, we demonstrate the therapeutic potential of targeting human (h) FcγRIIB (CD32B), a receptor implicated in immune cell desensitization and tumor cell resistance. FcγRIIB-blocking antibodies prevented internalization of the CD20-specific antibody rituximab, thereby maximizing cell surface accessibility and immune effector cell mediated antitumor activity. In hFcγRIIB-transgenic (Tg) mice, FcγRIIB-blocking antibodies effectively deleted target cells in combination with rituximab, and other therapeutic antibodies, from resistance-prone stromal compartments. Similar efficacy was seen in primary human tumor xenografts, including with cells from patients with relapsed/refractory disease. These data support the further development of hFcγRIIB antibodies for clinical assessment.


Asunto(s)
Anticuerpos Monoclonales de Origen Murino/uso terapéutico , Anticuerpos Monoclonales/uso terapéutico , Receptores de IgG/antagonistas & inhibidores , Animales , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales de Origen Murino/metabolismo , Anticuerpos Monoclonales de Origen Murino/farmacología , Sinergismo Farmacológico , Humanos , Ratones , Neoplasias/tratamiento farmacológico , Neoplasias/inmunología , Receptores de IgG/fisiología , Rituximab
10.
Reprod Fertil Dev ; 27(4): 684-92, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25730413

RESUMEN

Periconceptional environment may influence embryo development, ultimately affecting adult health. Here, we review the rodent model of maternal low-protein diet specifically during the preimplantation period (Emb-LPD) with normal nutrition during subsequent gestation and postnatally. This model, studied mainly in the mouse, leads to cardiovascular, metabolic and behavioural disease in adult offspring, with females more susceptible. We evaluate the sequence of events from diet administration that may lead to adult disease. Emb-LPD changes maternal serum and/or uterine fluid metabolite composition, notably with reduced insulin and branched-chain amino acids. This is sensed by blastocysts through reduced mammalian target of rapamycin complex 1 signalling. Embryos respond by permanently changing the pattern of development of their extra-embryonic lineages, trophectoderm and primitive endoderm, to enhance maternal nutrient retrieval during subsequent gestation. These compensatory changes include stimulation in proliferation, endocytosis and cellular motility, and epigenetic mechanisms underlying them are being identified. Collectively, these responses act to protect fetal growth and likely contribute to offspring competitive fitness. However, the resulting growth adversely affects long-term health because perinatal weight positively correlates with adult disease risk. We argue that periconception environmental responses reflect developmental plasticity and 'decisions' made by embryos to optimise their own development, but with lasting consequences.


Asunto(s)
Dieta con Restricción de Proteínas , Proteínas en la Dieta , Desarrollo Embrionario/fisiología , Desarrollo Fetal/fisiología , Fenómenos Fisiologicos Nutricionales Maternos/fisiología , Animales , Blastocisto/metabolismo , Femenino , Ratones , Embarazo
11.
BMC Dev Biol ; 15: 3, 2015 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-25609498

RESUMEN

BACKGROUND: Dietary interventions during pregnancy alter offspring fitness. We have shown mouse maternal low protein diet fed exclusively for the preimplantation period (Emb-LPD) before return to normal protein diet (NPD) for the rest of gestation, is sufficient to cause adult offspring cardiovascular and metabolic disease. Moreover, Emb-LPD blastocysts sense altered nutrition within the uterus and activate compensatory cellular responses including stimulated endocytosis within extra-embryonic trophectoderm and primitive endoderm (PE) lineages to protect fetal growth rate. However, these responses associate with later disease. Here, we investigate epigenetic mechanisms underlying nutritional programming of PE that may contribute to its altered phenotype, stabilised during subsequent development. We use embryonic stem (ES) cell lines established previously from Emb-LPD and NPD blastocysts that were differentiated into embryoid bodies (EBs) with outer PE-like layer. RESULTS: Emb-LPD EBs grow to a larger size than NPD EBs and express reduced Gata6 transcription factor (regulator of PE differentiation) at mRNA and protein levels, similar to Emb-LPD PE derivative visceral yolk sac tissue in vivo in later gestation. We analysed histone modifications at the Gata6 promoter in Emb-LPD EBs using chromatin immunoprecipitation assay. We found significant reduction in histone H3 and H4 acetylation and RNA polymerase II binding compared with NPD EBs, all markers of reduced transcription. Other histone modifications, H3K4Me2, H3K9Me3 and H3K27Me3, were unaltered. A similar but generally non-significant histone modification pattern was found on the Gata4 promoter. Consistent with these changes, histone deacetylase Hdac-1, but not Hdac-3, gene expression was upregulated in Emb-LPD EBs. CONCLUSIONS: First, these data demonstrate ES cells and EBs retain and propagate nutritional programming adaptations in vitro, suitable for molecular analysis of mechanisms, reducing animal use. Second, they reveal maternal diet induces persistent changes in histone modifications to regulate Gata6 expression and PE growth and differentiation that may affect lifetime health.


Asunto(s)
Dieta , Cuerpos Embrioides/metabolismo , Epigénesis Genética , Factor de Transcripción GATA6/genética , Histona Desacetilasas/genética , Histonas/metabolismo , Acetilación , Animales , Cuerpos Embrioides/enzimología , Células Madre Embrionarias/metabolismo , Femenino , Histona Desacetilasas/metabolismo , Ratones , Regiones Promotoras Genéticas
12.
Small ; 11(6): 713-21, 2015 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-25288531

RESUMEN

The interactions between skin and colloidal gold nanoparticles of different physicochemical characteristics are investigated. By systematically varying the charge, shape, and functionality of gold nanoparticles, the nanoparticle penetration through the different skin layers is assessed. The penetration is evaluated both qualitatively and quantitatively using a variety of complementary techniques. Inductively coupled plasma optical emission spectrometry (ICP-OES) is used to quantify the total number of particles which penetrate the skin structure. Transmission electron microscopy (TEM) and two photon photoluminescence microscopy (TPPL) on skin cross sections provide a direct visualization of nanoparticle migration within the different skin substructures. These studies reveal that gold nanoparticles functionalized with cell penetrating peptides (CPPs) TAT and R7 are found in the skin in larger quantities than polyethylene glycol-functionalized nanoparticles, and are able to enter deep into the skin structure. The systematic studies presented in this work may be of strong interest for developments in transdermal administration of drugs and therapy.


Asunto(s)
Oro/farmacología , Nanopartículas del Metal , Piel/citología , Piel/efectos de los fármacos , Animales , Animales Recién Nacidos , Células Cultivadas , Humanos , Nanopartículas del Metal/química , Nanopartículas del Metal/toxicidad , Ratones , Ratones Pelados , Ratones Endogámicos C57BL , Nanotubos/química , Nanotubos/toxicidad , Técnicas de Cultivo de Órganos/instrumentación , Técnicas de Cultivo de Órganos/métodos , Tamaño de la Partícula , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...