Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 207
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chem Rev ; 124(7): 4079-4123, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38527274

RESUMEN

All-perovskite tandem solar cells are attracting considerable interest in photovoltaics research, owing to their potential to surpass the theoretical efficiency limit of single-junction cells, in a cost-effective sustainable manner. Thanks to the bandgap-bowing effect, mixed tin-lead (Sn-Pb) perovskites possess a close to ideal narrow bandgap for constructing tandem cells, matched with wide-bandgap neat lead-based counterparts. The performance of all-perovskite tandems, however, has yet to reach its efficiency potential. One of the main obstacles that need to be overcome is the─oftentimes─low quality of the mixed Sn-Pb perovskite films, largely caused by the facile oxidation of Sn(II) to Sn(IV), as well as the difficult-to-control film crystallization dynamics. Additional detrimental imperfections are introduced in the perovskite thin film, particularly at its vulnerable surfaces, including the top and bottom interfaces as well as the grain boundaries. Due to these issues, the resultant device performance is distinctly far lower than their theoretically achievable maximum efficiency. Robust modifications and improvements to the surfaces of mixed Sn-Pb perovskite films are therefore critical for the advancement of the field. This Review describes the origins of imperfections in thin films and covers efforts made so far toward reaching a better understanding of mixed Sn-Pb perovskites, in particular with respect to surface modifications that improved the efficiency and stability of the narrow bandgap solar cells. In addition, we also outline the important issues of integrating the narrow bandgap subcells for achieving reliable and efficient all-perovskite double- and multi-junction tandems. Future work should focus on the characterization and visualization of the specific surface defects, as well as tracking their evolution under different external stimuli, guiding in turn the processing for efficient and stable single-junction and tandem solar cell devices.

2.
Nature ; 625(7995): 516-522, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38233617

RESUMEN

Perovskite solar cells (PSCs) comprise a solid perovskite absorber sandwiched between several layers of different charge-selective materials, ensuring unidirectional current flow and high voltage output of the devices1,2. A 'buffer material' between the electron-selective layer and the metal electrode in p-type/intrinsic/n-type (p-i-n) PSCs (also known as inverted PSCs) enables electrons to flow from the electron-selective layer to the electrode3-5. Furthermore, it acts as a barrier inhibiting the inter-diffusion of harmful species into or degradation products out of the perovskite absorber6-8. Thus far, evaporable organic molecules9,10 and atomic-layer-deposited metal oxides11,12 have been successful, but each has specific imperfections. Here we report a chemically stable and multifunctional buffer material, ytterbium oxide (YbOx), for p-i-n PSCs by scalable thermal evaporation deposition. We used this YbOx buffer in the p-i-n PSCs with a narrow-bandgap perovskite absorber, yielding a certified power conversion efficiency of more than 25%. We also demonstrate the broad applicability of YbOx in enabling highly efficient PSCs from various types of perovskite absorber layer, delivering state-of-the-art efficiencies of 20.1% for the wide-bandgap perovskite absorber and 22.1% for the mid-bandgap perovskite absorber, respectively. Moreover, when subjected to ISOS-L-3 accelerated ageing, encapsulated devices with YbOx exhibit markedly enhanced device stability.

3.
Adv Mater ; 36(2): e2305238, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37665975

RESUMEN

The limited conductivity of existing transparent conducting oxide (TCO) greatly restricts the further performance improvement of perovskite solar cells (PSCs), especially for large-area devices. Herein, buried-metal-grid tin-doped indium oxide (BMG ITO) electrodes are developed to minimize the power loss caused by the undesirable high sheet resistance of TCOs. By burying 140-nm-thick metal grids into ITO using a photolithography technique, the sheet resistance of ITO is reduced from 15.0 to 2.7 Ω sq-1 . The metal step of BMG over ITO has a huge impact on the charge carrier transport in PSCs. The PSCs using BMG ITO with a low metal step deliver power conversion efficiencies (PCEs) significantly better than that of their counterparts with higher metal steps. Moreover, compared with the pristine ITO-based PSCs, the BMG ITO-based PSCs show a smaller PCE decrease when scaling up the active area of devices. The parallel-connected large-area PSCs with an active area of 102.8 mm2 reach a PCE of 22.5%. The BMG ITO electrodes are also compatible with the fabrication of inverted-structure PSCs and organic solar cells. The work demonstrates the great efficacy of improving the conductivity of TCO by BMG and opens up a promising avenue for constructing highly efficient large-area PSCs.

4.
Adv Sci (Weinh) ; 11(4): e2305383, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38037253

RESUMEN

Surface defects of metal halide perovskite nanocrystals (PNCs) substantially compromise the optoelectronic performances of the materials and devices via undesired charge recombination. However, those defects, mainly the vacancies, are structurally entangled with each other in the PNC lattice, necessitating a delicately designed strategy for effective passivation. Here, a synergistic metal ion doping and surface ligand exchange strategy is proposed to passivate the surface defects of CsPbBr3 PNCs with various divalent metal (e.g., Cd2+ , Zn2+, and Hg2+ ) acetate salts and didodecyldimethylammonium (DDA+ ) via one-step post-treatment. The addition of metal acetate salts to PNCs is demonstrated to suppress the defect formation energy effectively via the ab initio calculations. The developed PNCs not only have near-unity photoluminescence quantum yield and excellent stability but also show luminance of 1175 cd m-2 , current efficiency of 65.48 cd A-1 , external quantum efficiency of 20.79%, wavelength of 514 nm in optimized PNC light-emitting diodes with Cd2+ passivator and DDA ligand. The "organic-inorganic" hybrid engineering approach is completely general and can be straightforwardly applied to any combination of quaternary ammonium ligands and source of metal, which will be useful in PNC-based optoelectronic devices such as solar cells, photodetectors, and transistors.

5.
Adv Mater ; 36(6): e2307743, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37988595

RESUMEN

All-perovskite tandem solar cells show great potential to enable the highest performance at reasonable costs for a viable market entry in the near future. In particular, wide-bandgap (WBG) perovskites with higher open-circuit voltage (VOC ) are essential to further improve the tandem solar cells' performance. Here, a new 1.8 eV bandgap triple-halide perovskite composition in conjunction with a piperazinium iodide (PI) surface treatment is developed. With structural analysis, it is found that the PI modifies the surface through a reduction of excess lead iodide in the perovskite and additionally penetrates the bulk. Constant light-induced magneto-transport measurements are applied to separately resolve charge carrier properties of electrons and holes. These measurements reveal a reduced deep trap state density, and improved steady-state carrier lifetime (factor 2.6) and diffusion lengths (factor 1.6). As a result, WBG PSCs achieve 1.36 V VOC , reaching 90% of the radiative limit. Combined with a 1.26 eV narrow bandgap (NBG) perovskite with a rubidium iodide additive, this enables a tandem cell with a certified scan efficiency of 27.5%.

6.
J Phys Chem Lett ; 14(50): 11333-11341, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38064364

RESUMEN

Lead Mixed Halide Perovskites (LMHPs), CsPbBrI2, have attracted significant interest as promising candidates for wide bandgap absorber layers in tandem solar cells due to their relative stability and red-light emission with a bandgap ∼1.7 eV. However, these materials segregate into Br-rich and I-rich domains upon continuous illumination, affecting their optical properties and compromising the operational stability of devices. Herein, we track the microscopic processes occurring during halide segregation by using combined spectroscopic measurements at room and cryogenic temperatures. We also evaluate a passivation strategy to mitigate the halide migration of Br/I ions in the films by overcoating with cyclic olefin copolymer (COC). Our results explain the correlation between grain size, intensity dependencies, phase segregation, activation energy barrier, and their influence on photoinduced carrier lifetimes. Importantly, COC treatment increases the lifetime charge carriers in mixed halide thin films, improving efficient charge transport in perovskite solar cell applications.

7.
Nano Lett ; 23(23): 10667-10673, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38016047

RESUMEN

Ultranarrow bandwidth single-photon sources operating at room-temperature are of vital importance for viable optical quantum technologies at scale, including quantum key distribution, cloud-based quantum information processing networks, and quantum metrology. Here we show a room-temperature ultranarrow bandwidth single-photon source generating single-mode photons at a rate of 5 MHz based on an inorganic CsPbI3 perovskite quantum dot embedded in a tunable open-access optical microcavity. When coupled to an optical cavity mode, the quantum dot room-temperature emission becomes single-mode, and the spectrum narrows down to just ∼1 nm. The low numerical aperture of the optical cavities enables efficient collection of high-purity single-mode single-photon emission at room-temperature, offering promising performance for photonic and quantum technology applications. We measure 94% pure single-photon emission in a single-mode under pulsed and continuous-wave (CW) excitation.

8.
Small ; 19(45): e2303472, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37420329

RESUMEN

The severely insufficient operational lifetime of perovskite light-emitting diodes (LEDs) is incompatible with the rapidly increasing external quantum efficiency, even as it approaches the theoretical limit, thereby significantly impeding the commercialization of perovskite LEDs. In addition, Joule heating induces ion migration and surface defects, degrades the photoluminescence quantum yield and other optoelectronic properties of perovskite films, and induces the crystallization of charge transport layers with low glass transition temperatures, resulting in LED degradation under continuous operation. Here, a novel thermally crosslinked hole transport material, poly(FCA60 -co-BFCA20 -co-VFCA20 ) (poly-FBV), with temperature-dependent hole mobility is designed, which is advantageous for balancing the charge injection of the LEDs and limiting the generation of Joule heating. The optimised CsPbI3 perovskite nanocrystal LEDs with poly-FBV realise approximately a 2-fold external quantum efficiency increase over the LED with commercial hole transport layer poly(4-butyl-phenyl-diphenyl-amine) (poly-TPD), owing to the balanced carrier injection and suppressed exciton quenching. Moreover, because of the Joule heating control provided by the novel crosslinked hole transport material, the LED utilising crosslinked poly-FBV has a 150-fold longer operating lifetime (490 min) than that utilizing poly-TPD (3.3 min). The study opens a new avenue for the use of PNC LEDs in commercial semiconductor optoelectronic devices.

9.
ACS Energy Lett ; 8(6): 2543-2551, 2023 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-37324536

RESUMEN

Formamidinium lead trioiodide (FAPbI3) is a promising perovskite for single-junction solar cells. However, FAPbI3 is metastable at room temperature and can cause intrinsic quantum confinement effects apparent through a series of above-bandgap absorption peaks. Here, we explore three common solution-based film-fabrication methods, neat N,N-dimethylformamide (DMF)-dimethyl sulfoxide (DMSO) solvent, DMF-DMSO with methylammonium chloride, and a sequential deposition approach. The latter two offer enhanced nucleation and crystallization control and suppress such quantum confinement effects. We show that elimination of these absorption features yields increased power conversion efficiencies (PCEs) and short-circuit currents, suggesting that quantum confinement hinders charge extraction. A meta-analysis of literature reports, covering 244 articles and 825 photovoltaic devices incorporating FAPbI3 films corroborates our findings, indicating that PCEs rarely exceed a 20% threshold when such absorption features are present. Accordingly, ensuring the absence of these absorption features should be the first assessment when designing fabrication approaches for high-efficiency FAPbI3 solar cells.

10.
Adv Mater ; 35(30): e2211742, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37191054

RESUMEN

Metal halide perovskite based tandem solar cells are promising to achieve power conversion efficiency beyond the theoretical limit of their single-junction counterparts. However, overcoming the significant open-circuit voltage deficit present in wide-bandgap perovskite solar cells remains a major hurdle for realizing efficient and stable perovskite tandem cells. Here, a holistic approach to overcoming challenges in 1.8 eV perovskite solar cells is reported by engineering the perovskite crystallization pathway by means of chloride additives. In conjunction with employing a self-assembled monolayer as the hole-transport layer, an open-circuit voltage of 1.25 V and a power conversion efficiency of 17.0% are achieved. The key role of methylammonium chloride addition is elucidated in facilitating the growth of a chloride-rich intermediate phase that directs crystallization of the desired cubic perovskite phase and induces more effective halide homogenization. The as-formed 1.8 eV perovskite demonstrates suppressed halide segregation and improved optoelectronic properties.

11.
Precis Chem ; 1(2): 69-82, 2023 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-37124243

RESUMEN

Tin-containing metal halide perovskites have enormous potential as photovoltaics, both in narrow band gap mixed tin-lead materials for all-perovskite tandems and for lead-free perovskites. The introduction of Sn(II), however, has significant effects on the solution chemistry, crystallization, defect states, and other material properties in halide perovskites. In this perspective, we summarize the main hurdles for tin-containing perovskites and highlight successful attempts made by the community to overcome them. We discuss important research directions for the development of these materials and propose some approaches to achieve a unified understanding of Sn incorporation. We particularly focus on the discussion of charge carrier dynamics and nonradiative losses at the interfaces between perovskite and charge extraction layers in p-i-n cells. We hope these insights will aid the community to accelerate the development of high-performance, stable single-junction tin-containing perovskite solar cells and all-perovskite tandems.

12.
J Am Chem Soc ; 145(18): 10275-10284, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37115733

RESUMEN

Formamidinium lead triiodide (FAPbI3) is the leading candidate for single-junction metal-halide perovskite photovoltaics, despite the metastability of this phase. To enhance its ambient-phase stability and produce world-record photovoltaic efficiencies, methylenediammonium dichloride (MDACl2) has been used as an additive in FAPbI3. MDA2+ has been reported as incorporated into the perovskite lattice alongside Cl-. However, the precise function and role of MDA2+ remain uncertain. Here, we grow FAPbI3 single crystals from a solution containing MDACl2 (FAPbI3-M). We demonstrate that FAPbI3-M crystals are stable against transformation to the photoinactive δ-phase for more than one year under ambient conditions. Critically, we reveal that MDA2+ is not the direct cause of the enhanced material stability. Instead, MDA2+ degrades rapidly to produce ammonium and methaniminium, which subsequently oligomerizes to yield hexamethylenetetramine (HMTA). FAPbI3 crystals grown from a solution containing HMTA (FAPbI3-H) replicate the enhanced α-phase stability of FAPbI3-M. However, we further determine that HMTA is unstable in the perovskite precursor solution, where reaction with FA+ is possible, leading instead to the formation of tetrahydrotriazinium (THTZ-H+). By a combination of liquid- and solid-state NMR techniques, we show that THTZ-H+ is selectively incorporated into the bulk of both FAPbI3-M and FAPbI3-H at ∼0.5 mol % and infer that this addition is responsible for the improved α-phase stability.

13.
Small Methods ; 7(6): e2300095, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36908028

RESUMEN

Owing to the unique chemical and electronic properties arising from 3d-electrons, substitution with transition metal ions is one of the key routes for engineering new functionalities into materials. While this approach has been used extensively in complex metal oxide perovskites, metal halide perovskites have largely resisted facile isovalent substitution. In this work, it is demonstrated that the substitution of Co2+ into the lattice of methylammonium lead triiodide imparts magnetic behavior to the material while maintaining photovoltaic performance at low concentrations. In addition to comprehensively characterizing its magnetic properties, the Co2+ ions themselves are utilized as probes to sense the local electronic environment of Pb in the perovskite, thereby revealing the nature of their incorporation into the material. A comprehensive understanding of the effect of transition metal incorporation is provided, thereby opening the substitution gateway for developing novel functional perovskite materials and devices for future technologies.

14.
ACS Nano ; 17(4): 3289-3300, 2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36790329

RESUMEN

Halide perovskite light-emitting diodes (PeLEDs) exhibit great potential for use in next-generation display technologies. However, scale-up will be challenging due to the requirement of very thin transport layers for high efficiencies, which often present spatial inhomogeneities from improper wetting and drying during solution processing. Here, we show how a thin Al2O3 layer grown by atomic layer deposition can be used to preferentially cover regions of imperfect hole transport layer deposition and form an intermixed composite with the organic transport layer, allowing hole conduction and injection to persist through the organic hole transporter. This has the dual effect of reducing nonradiative recombination at the heterojunction and improving carrier selectivity, which we infer to be due to the inhibition of direct contact between the indium tin oxide and perovskite layers. We observe an immediate improvement in electroluminescent external quantum efficiency in our p-i-n LEDs from an average of 9.8% to 13.5%, with a champion efficiency of 15.0%. The technique uses industrially available equipment and can readily be scaled up to larger areas and incorporated in other applications such as thin-film photovoltaic cells.

15.
Nat Commun ; 14(1): 932, 2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36805448

RESUMEN

In this work, we couple theoretical and experimental approaches to understand and reduce the losses of wide bandgap Br-rich perovskite pin devices at open-circuit voltage (VOC) and short-circuit current (JSC) conditions. A mismatch between the internal quasi-Fermi level splitting (QFLS) and the external VOC is detrimental for these devices. We demonstrate that modifying the perovskite top-surface with guanidinium-Br and imidazolium-Br forms a low-dimensional perovskite phase at the n-interface, suppressing the QFLS-VOC mismatch, and boosting the VOC. Concurrently, the use of an ionic interlayer or a self-assembled monolayer at the p-interface reduces the inferred field screening induced by mobile ions at JSC, promoting charge extraction and raising the JSC. The combination of the n- and p-type optimizations allows us to approach the thermodynamic potential of the perovskite absorber layer, resulting in 1 cm2 devices with performance parameters of VOCs up to 1.29 V, fill factors above 80% and JSCs up to 17 mA/cm2, in addition to a thermal stability T80 lifetime of more than 3500 h at 85 °C.

16.
J Hazard Mater ; 447: 130829, 2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-36682249

RESUMEN

Perovskite solar cells represent an emerging and highly promising renewable energy technology. However, the most efficient perovskite solar cells critically depend on the use of lead. This represents a possible environmental concern potentially limiting the technologies' commercialization. Here, we demonstrate a facile recycling process for PbI2, the most common lead-based precursor in perovskite absorber material. The process uses only hot water to effectively extract lead from synthetic precursor mixes, plastic- and glass-based perovskites (92.6 - 100% efficiency after two extractions). When the hot extractant is cooled, crystalline PbI2 in high purity (> 95.9%) precipitated with a high yield: from glass-based perovskites, the first cycle of extraction / precipitation was sufficient to recover 94.4 ± 5.6% of Pb, whereas a second cycle yielded another 10.0 ± 5.2% Pb, making the recovery quantitative. The solid extraction residue remaining is consequently deprived of metals and may thus be disposed as non-hazardous waste. Therefore, exploiting the highly temperature-dependent solubility of PbI2 in water provides a straightforward, easy to implement way to efficiently extract lead from PSC at the end-of-life and deposit the extraction residues in a cost-effective manner, mitigating the potential risk of lead leaching at the perovskites' end-of-life.

17.
ACS Appl Mater Interfaces ; 15(1): 772-781, 2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36563084

RESUMEN

Vacuum deposition is a solvent-free method suitable for growing thin films of metal halide perovskite (MHP) semiconductors. However, most reports of high-efficiency solar cells based on such vacuum-deposited MHP films incorporate solution-processed hole transport layers (HTLs), thereby complicating prospects of industrial upscaling and potentially affecting the overall device stability. In this work, we investigate organometallic copper phthalocyanine (CuPc) and zinc phthalocyanine (ZnPc) as alternative, low-cost, and durable HTLs in all-vacuum-deposited solvent-free formamidinium-cesium lead triodide [CH(NH2)2]0.83Cs0.17PbI3 (FACsPbI3) perovskite solar cells. We elucidate that the CuPc HTL, when employed in an "inverted" p-i-n solar cell configuration, attains a solar-to-electrical power conversion efficiency of up to 13.9%. Importantly, unencapsulated devices as large as 1 cm2 exhibited excellent long-term stability, demonstrating no observable degradation in efficiency after more than 5000 h in storage and 3700 h under 85 °C thermal stressing in N2 atmosphere.

18.
Adv Mater ; 35(8): e2209486, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36496257

RESUMEN

Semiconducting lead halide perovskite nanocrystals (PNCs) are regarded as promising candidates for next-generation optoelectronic devices due to their solution processability and outstanding optoelectronic properties. While the field of light-emitting diodes (LEDs) and photovoltaics (PVs), two prime examples of optoelectronic devices, has recently seen a multitude of efforts toward high-performance PNC-based devices, realizing both devices with high efficiencies and stabilities through a single PNC processing strategy has remained a challenge.  In this work, diphenylpropylammonium (DPAI) surface ligands, found through a judicious ab-initio-based ligand search, are shown to provide a solution to this problem. The universal PNC ink with DPAI ligands presented here, prepared through a solution-phase ligand-exchange process, simultaneously allows single-step processed LED and PV devices with peak electroluminescence external quantum efficiency of 17.00% and power conversion efficiency of 14.92% (stabilized output 14.00%), respectively. It is revealed that a careful design of the aromatic rings such as in DPAI is the decisive factor in bestowing such high performances, ease of solution processing, and improved phase stability up to 120 days. This work illustrates the power of ligand design in producing PNC ink formulations for high-throughput production of optoelectronic devices; it also paves a path for "dual-mode" devices with both PV and LED functionalities.

19.
Nat Mater ; 22(1): 73-83, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36456873

RESUMEN

Achieving the long-term stability of perovskite solar cells is arguably the most important challenge required to enable widespread commercialization. Understanding the perovskite crystallization process and its direct impact on device stability is critical to achieving this goal. The commonly employed dimethyl-formamide/dimethyl-sulfoxide solvent preparation method results in a poor crystal quality and microstructure of the polycrystalline perovskite films. In this work, we introduce a high-temperature dimethyl-sulfoxide-free processing method that utilizes dimethylammonium chloride as an additive to control the perovskite intermediate precursor phases. By controlling the crystallization sequence, we tune the grain size, texturing, orientation (corner-up versus face-up) and crystallinity of the formamidinium (FA)/caesium (FA)yCs1-yPb(IxBr1-x)3 perovskite system. A population of encapsulated devices showed improved operational stability, with a median T80 lifetime (the time over which the device power conversion efficiency decreases to 80% of its initial value) for the steady-state power conversion efficiency of 1,190 hours, and a champion device showed a T80 of 1,410 hours, under simulated sunlight at 65 °C in air, under open-circuit conditions. This work highlights the importance of material quality in achieving the long-term operational stability of perovskite optoelectronic devices.


Asunto(s)
Amidinas , Luz Solar , Cationes , Dimetilsulfóxido
20.
Adv Mater ; 35(5): e2206345, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36443913

RESUMEN

Inverted-structure metal halide perovskite solar cells (PSCs) have attractive advantages like low-temperature processability and outstanding device stability. The two-step sequential deposition method shows the benefits of easy fabrication and decent performance repeatability. Nevertheless, it is still challenging to achieve high-performance inverted PSCs with similar or equal power conversion efficiencies (PCEs) compared to the regular-structure counterparts via this deposition method. Here, an improved two-step sequential deposition technique is demonstrated via treating the bottom organic hole-selective layer with the binary modulation system composed of a polyelectrolyte and an ammonium salt. Such improved sequential deposition method leads to the spontaneous refinement of up and buried interfaces for the perovskite films, contributing to high film quality with significantly reduced defect density and better charge transportation. As a result, the optimized PSCs show a large enhancement in the open-circuit voltage by 100 mV and a dramatic lift in the PCE from 18.1% to 23.4%, delivering the current state-of-the-art performances for inverted PSCs. Moreover, good operational and thermal stability is achieved upon the improved inverted PSCs. This innovative strategy helps gain a deeper insight into the perovskite crystal growth and defect modulation in the inverted PSCs based on the two-step sequential deposition method.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...