Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Am J Physiol Renal Physiol ; 319(3): F403-F413, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32686525

RESUMEN

Acute kidney injury is a common clinical disorder and one of the major causes of morbidity and mortality in the postoperative period. In this study, the safety and efficacy of autologous mitochondrial transplantation by intra-arterial injection for renal protection in a swine model of bilateral renal ischemia-reperfusion injury were investigated. Female Yorkshire pigs underwent percutaneous bilateral temporary occlusion of the renal arteries with balloon catheters. Following 60 min of ischemia, the balloon catheters were deflated and animals received either autologous mitochondria suspended in vehicle or vehicle alone, delivered as a single bolus to the renal arteries. The injected mitochondria were rapidly taken up by the kidney and were distributed throughout the tubular epithelium of the cortex and medulla. There were no safety-related issues detected with mitochondrial transplantation. Following 24 h of reperfusion, estimated glomerular filtration rate and urine output were significantly increased while serum creatinine and blood urea nitrogen were significantly decreased in swine that received mitochondria compared with those that received vehicle. Gross anatomy, histopathological analysis, acute tubular necrosis scoring, and transmission electron microscopy showed that the renal cortex of the vehicle-treated group had extensive coagulative necrosis of primarily proximal tubules, while the mitochondrial transplanted kidney showed only patchy mild acute tubular injury. Renal cortex IL-6 expression was significantly increased in vehicle-treated kidneys compared with the kidneys that received mitochondrial transplantation. These results demonstrate that mitochondrial transplantation by intra-arterial injection provides renal protection from ischemia-reperfusion injury, significantly enhancing renal function and reducing renal damage.


Asunto(s)
Lesión Renal Aguda/terapia , Mitocondrias/trasplante , Daño por Reperfusión/terapia , Animales , Femenino , Inyecciones Intraarteriales , Porcinos
2.
Am J Physiol Lung Cell Mol Physiol ; 318(1): L78-L88, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31693391

RESUMEN

The most common cause of acute lung injury is ischemia-reperfusion injury (IRI), during which mitochondrial damage occurs. We have previously demonstrated that mitochondrial transplantation is an efficacious therapy to replace or augment mitochondria damaged by IRI, allowing for enhanced muscle viability and function in cardiac tissue. Here, we investigate the efficacy of mitochondrial transplantation in a murine lung IRI model using male C57BL/6J mice. Transient ischemia was induced by applying a microvascular clamp on the left hilum for 2 h. Upon reperfusion mice received either vehicle or vehicle-containing mitochondria either by vascular delivery (Mito V) through the pulmonary artery or by aerosol delivery (Mito Neb) via the trachea (nebulization). Sham control mice underwent thoracotomy without hilar clamping and were ventilated for 2 h before returning to the cage. After 24 h recovery, lung mechanics were assessed and lungs were collected for analysis. Our results demonstrated that at 24 h of reperfusion, dynamic compliance and inspiratory capacity were significantly increased and resistance, tissue damping, elastance, and peak inspiratory pressure (Mito V only) were significantly decreased (P < 0.05) in Mito groups as compared with their respective vehicle groups. Neutrophil infiltration, interstitial edema, and apoptosis were significantly decreased (P < 0.05) in Mito groups as compared with vehicles. No significant differences in cytokines and chemokines between groups were shown. All lung mechanics results in Mito groups except peak inspiratory pressure in Mito Neb showed no significant differences (P > 0.05) as compared with Sham. These results conclude that mitochondrial transplantation by vascular delivery or nebulization improves lung mechanics and decreases lung tissue injury.


Asunto(s)
Pulmón/fisiopatología , Mitocondrias/fisiología , Daño por Reperfusión/fisiopatología , Lesión Pulmonar Aguda/metabolismo , Lesión Pulmonar Aguda/fisiopatología , Animales , Apoptosis/fisiología , Líquido del Lavado Bronquioalveolar , Quimiocinas/metabolismo , Citocinas/metabolismo , Modelos Animales de Enfermedad , Pulmón/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Infiltración Neutrófila/fisiología , Daño por Reperfusión/metabolismo , Pruebas de Función Respiratoria/métodos
3.
Ultrasound Med Biol ; 46(2): 369-376, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31694771

RESUMEN

A cost-effective method for serial in vivo imaging of tumor microvasculature has been developed. We evaluated acoustic angiography (AA) for visualizing and assessing non-small cell lung tumor (A549) microvasculature in mice before and after tumor vascular disruption by vascular-targeted gold nanoparticles and radiotherapy. Standard B-mode and microbubble-enhanced AA images were acquired at pre- and post-treatment time points. Using these modes, a new metric, 50% vessel penetration depth, was developed to characterize the 3-D spatial heterogeneity of microvascular networks. We observed an increase in tumor perfusion after radiation-induced vascular disruption, relative to control animals. This was also visualized in vessel morphology mode, which revealed a loss in vessel integrity. We found that tumors with poorly perfused vasculature at day 0 exhibited a reduced growth rate over time. This suggested a new method to reduce in-group treatment response variability using pre-treatment microvessel maps to objectively identify animals for study removal.


Asunto(s)
Angiografía/métodos , Medios de Contraste , Imagenología Tridimensional , Nanopartículas del Metal , Microburbujas , Microvasos/diagnóstico por imagen , Neoplasias/irrigación sanguínea , Neoplasias/diagnóstico por imagen , Animales , Femenino , Aumento de la Imagen , Ratones , Ultrasonografía/métodos
4.
JACC Basic Transl Sci ; 4(8): 871-888, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31909298

RESUMEN

Mitochondrial dysfunction is the determinant insult of ischemia-reperfusion injury. Autologous mitochondrial transplantation involves supplying one's healthy mitochondria to the ischemic region harboring damaged mitochondria. The authors used in vivo swine to show that mitochondrial transplantation in the heart by intracoronary delivery is safe, with specific distribution to the heart, and results in significant increase in coronary blood flow, which requires intact mitochondrial viability, adenosine triphosphate production, and, in part, the activation of vascular KIR channels. Intracoronary mitochondrial delivery after temporary regional ischemia significantly improved myocardial function, perfusion, and infarct size. The authors concluded that intracoronary delivery of mitochondria is safe and efficacious therapy for myocardial ischemia-reperfusion injury.

5.
J Heart Lung Transplant ; 38(1): 92-99, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30391192

RESUMEN

BACKGROUND: Cold ischemia time (CIT) causes ischemia‒reperfusion injury to the mitochondria and detrimentally effects myocardial function and tissue viability. Mitochondrial transplantation replaces damaged mitochondria and enhances myocardial function and tissue viability. Herein we investigated the efficacy of mitochondrial transplantation in enhancing graft function and viability after prolonged CIT. METHODS: Heterotopic heart transplantation was performed in C57BL/6J mice. Upon heart harvesting from C57BL/6J donors, 0.5 ml of either mitochondria (1 × 108 in respiration buffer; mitochondria group) or respiration buffer (vehicle group) was delivered antegrade to the coronary arteries via injection to the coronary ostium. The hearts were excised and preserved for 29 ± 0.3 hours in cold saline (4°C). The hearts were then heterotopically transplanted. A second injection of either mitochondria (1 × 108) or respiration buffer (vehicle) was delivered antegrade to the coronary arteries 5 minutes after transplantation. Grafts were analyzed for 24 hours. Beating score, graft function, and tissue injury were measured. RESULTS: Beating score, calculated ejection fraction, and shortening fraction were significantly enhanced (p < 0.05), whereas necrosis and neutrophil infiltration were significantly decreased (p < 0.05) in the mitochondria group as compared with the vehicle group at 24 hours of reperfusion. Transmission electron microscopy showed the presence of contraction bands in vehicle but not in mitochondria grafts. CONCLUSIONS: Mitochondrial transplantation prolongs CIT to 29 hours in the murine heart transplantation model, significantly enhances graft function, and decreases graft tissue injury. Mitochondrial transplantation may provide a means to reduce graft failure and improve transplantation outcomes after prolonged CIT.


Asunto(s)
Isquemia Fría/efectos adversos , Trasplante de Corazón , Mitocondrias Cardíacas/trasplante , Preservación de Órganos/métodos , Animales , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones Endogámicos C57BL , Microscopía Electrónica de Transmisión , Mitocondrias Cardíacas/ultraestructura
6.
EMBO J ; 37(22)2018 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-30348863

RESUMEN

The Hippo pathway and its nuclear effector Yap regulate organ size and cancer formation. While many modulators of Hippo activity have been identified, little is known about the Yap target genes that mediate these growth effects. Here, we show that yap-/- mutant zebrafish exhibit defects in hepatic progenitor potential and liver growth due to impaired glucose transport and nucleotide biosynthesis. Transcriptomic and metabolomic analyses reveal that Yap regulates expression of glucose transporter glut1, causing decreased glucose uptake and use for nucleotide biosynthesis in yap-/- mutants, and impaired glucose tolerance in adults. Nucleotide supplementation improves Yap deficiency phenotypes, indicating functional importance of glucose-fueled nucleotide biosynthesis. Yap-regulated glut1 expression and glucose uptake are conserved in mammals, suggesting that stimulation of anabolic glucose metabolism is an evolutionarily conserved mechanism by which the Hippo pathway controls organ growth. Together, our results reveal a central role for Hippo signaling in glucose metabolic homeostasis.


Asunto(s)
Glucosa/metabolismo , Hígado/embriología , Nucleótidos/biosíntesis , Transducción de Señal/fisiología , Transactivadores/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Animales , Glucosa/genética , Transportador de Glucosa de Tipo 1/genética , Transportador de Glucosa de Tipo 1/metabolismo , Ratones , Nucleótidos/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Serina-Treonina Quinasa 3 , Transactivadores/genética , Proteínas Señalizadoras YAP , Pez Cebra/genética , Proteínas de Pez Cebra/genética
7.
Sci Transl Med ; 10(438)2018 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-29695452

RESUMEN

Right ventricular (RV) heart failure is the leading cause of death in pulmonary arterial hypertension (PAH). Peroxisome proliferator-activated receptor γ (PPARγ) acts as a vasoprotective metabolic regulator in smooth muscle and endothelial cells; however, its role in the heart is unclear. We report that deletion of PPARγ in cardiomyocytes leads to biventricular systolic dysfunction and intramyocellular lipid accumulation in mice. In the SU5416/hypoxia (SuHx) rat model, oral treatment with the PPARγ agonist pioglitazone completely reverses severe PAH and vascular remodeling and prevents RV failure. Failing RV cardiomyocytes exhibited mitochondrial disarray and increased intramyocellular lipids (lipotoxicity) in the SuHx heart, which was prevented by pioglitazone. Unbiased ventricular microRNA (miRNA) arrays, mRNA sequencing, and lipid metabolism studies revealed dysregulation of cardiac hypertrophy, fibrosis, myocardial contractility, fatty acid transport/oxidation (FAO), and transforming growth factor-ß signaling in the failing RV. These epigenetic, transcriptional, and metabolic alterations were modulated by pioglitazone through miRNA/mRNA networks previously not associated with PAH/RV dysfunction. Consistently, pre-miR-197 and pre-miR-146b repressed genes that drive FAO (Cpt1b and Fabp4) in primary cardiomyocytes. We recapitulated our major pathogenic findings in human end-stage PAH: (i) in the pressure-overloaded failing RV (miR-197 and miR-146b up-regulated), (ii) in peripheral pulmonary arteries (miR-146b up-regulated, miR-133b down-regulated), and (iii) in plexiform vasculopathy (miR-133b up-regulated, miR-146b down-regulated). Together, PPARγ activation can normalize epigenetic and transcriptional regulation primarily related to disturbed lipid metabolism and mitochondrial morphology/function in the failing RV and the hypertensive pulmonary vasculature, representing a therapeutic approach for PAH and other cardiovascular/pulmonary diseases.


Asunto(s)
Ácidos Grasos/metabolismo , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/metabolismo , Hipertensión Pulmonar/tratamiento farmacológico , Hipertensión Pulmonar/metabolismo , PPAR gamma/metabolismo , Pioglitazona/uso terapéutico , Disfunción Ventricular Derecha/tratamiento farmacológico , Disfunción Ventricular Derecha/metabolismo , Femenino , Hemodinámica/efectos de los fármacos , Humanos , Masculino , Oxidación-Reducción/efectos de los fármacos , PPAR gamma/agonistas
8.
PLoS One ; 11(8): e0160889, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27500955

RESUMEN

We have previously shown that transplantation of autologously derived, respiration-competent mitochondria by direct injection into the heart following transient ischemia and reperfusion enhances cell viability and contractile function. To increase the therapeutic potential of this approach, we investigated whether exogenous mitochondria can be effectively delivered through the coronary vasculature to protect the ischemic myocardium and studied the fate of these transplanted organelles in the heart. Langendorff-perfused rabbit hearts were subjected to 30 minutes of ischemia and then reperfused for 10 minutes. Mitochondria were labeled with 18F-rhodamine 6G and iron oxide nanoparticles. The labeled mitochondria were either directly injected into the ischemic region or delivered by vascular perfusion through the coronary arteries at the onset of reperfusion. These hearts were used for positron emission tomography, microcomputed tomography, and magnetic resonance imaging with subsequent microscopic analyses of tissue sections to confirm the uptake and distribution of exogenous mitochondria. Injected mitochondria were localized near the site of delivery; while, vascular perfusion of mitochondria resulted in rapid and extensive dispersal throughout the heart. Both injected and perfused mitochondria were observed in interstitial spaces and were associated with blood vessels and cardiomyocytes. To determine the efficacy of vascular perfusion of mitochondria, an additional group of rabbit hearts were subjected to 30 minutes of regional ischemia and reperfused for 120 minutes. Immediately following regional ischemia, the hearts received unlabeled, autologous mitochondria delivered through the coronary arteries. Autologous mitochondria perfused through the coronary vasculature significantly decreased infarct size and significantly enhanced post-ischemic myocardial function. In conclusion, the delivery of mitochondria through the coronary arteries resulted in their rapid integration and widespread distribution throughout the heart and provided cardioprotection from ischemia-reperfusion injury.


Asunto(s)
Cardiotónicos/administración & dosificación , Vasos Coronarios , Mitocondrias/trasplante , Contracción Miocárdica , Daño por Reperfusión Miocárdica/prevención & control , Animales , Femenino , Humanos , Mitocondrias/metabolismo , Miocardio/metabolismo , Miocardio/patología , Conejos
9.
J Nucl Med Technol ; 39(2): 100-4, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21565952

RESUMEN

UNLABELLED: Our objective was to optimize the quality of (123)I-metaiodobenzylguanidine (MIBG) scans by using a medium-energy collimator to reduce high-energy-photon septal penetration. METHODS: In addition to the 159-keV γ-ray, (123)I has a small abundance of energies above 400 keV that can compromise the image quality of MIBG studies because of septal penetration. Using a low-energy ultrahigh-resolution collimator (LEUHR), a low-energy high-resolution collimator (LEHR), and a medium-energy collimator, we obtained and compared SPECT and planar images of a SPECT phantom filled with (123)I. These studies were acquired at a count level comparable to clinical MIBG images, 24,000 counts per view for SPECT and 300,000 counts for planar imaging. Also, we evaluated the sensitivity of the 3 collimators at 0 and 10 cm using the National Electrical Manufacturers Association protocol. RESULTS: The image quality for both SPECT and planar (123)I images using the medium-energy collimator was determined to be substantially better than that using the LEUHR or LEHR collimator. The septa of the medium-energy collimator are thicker than those of the low-energy collimators (1.14 vs. 0.13-0.16 mm), leading to a significant reduction in septal penetration of the high-energy γ-rays and a marked improvement in image quality. The sensitivity for the medium-energy collimator did not change with distance (8.00 cpm/kBq), as opposed to the LEUHR collimator (6.59 and 5.51 cpm/kBq for 0 and 10 cm, respectively) and the LEHR collimator (14.32 and 12.30 cpm/kBq for 0 and 10 cm, respectively). This variation in sensitivity for the LEUHR collimator is again due to the presence of high-energy photons. CONCLUSION: Use of a medium-energy collimator substantially improves the quality of both planar and SPECT (123)I images. We recommend that a medium-energy collimator routinely be used for (123)I-MIBG imaging.


Asunto(s)
3-Yodobencilguanidina , Tomografía Computarizada de Emisión de Fotón Único/métodos , Niño , Humanos , Fotones , Control de Calidad
10.
Nucl Med Biol ; 38(1): 29-38, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21220127

RESUMEN

INTRODUCTION: Use of copper radioisotopes in antibody radiolabeling is challenged by reported loss of the radionuclide from the bifunctional chelator used to label the protein. The objective of this study was to investigate the relationship between the thermodynamic stability of the (64)Cu-complexes of five commonly used bifunctional chelators (BFCs) and the biodistribution of an antibody labeled with (64)Cu using these chelators in tumor-bearing mice. METHODS: The chelators [S-2-(aminobenzyl)1,4,7-triazacyclononane-1,4,7-triacetic acid (p-NH(2)-Bn-NOTA): 6-[p-(bromoacetamido)benzyl]-1, 4, 8, 11-tetraazacyclotetradecane-N, N', N'', N'''-tetraacetic acid (BAT-6): S-2-(4-aminobenzyl)-1,4,7,10-tetraazacyclododocane tetraacetic acid (p-NH(2)-Bn-DOTA): 1,4,7,10-tetraazacyclododocane-N, N', N", N"'-tetraacetic acid (DOTA): and 1-N-(4-aminobenzyl)-3,6,10,13,16,19-hexaazabicyclo[6.6.6]eicosane-1,8-diamine (SarAr)] were conjugated to the anti-GD2 antibody ch14.18, and the modified antibody was labeled with (64)Cu and injected into mice bearing subcutaneous human melanoma tumors (M21) (n = 3-5 for each study). Biodistribution data were obtained from positron emission tomography images acquired at 1, 24 and 48 hours post-injection, and at 48 hours post-injection a full ex vivo biodistribution study was carried out. RESULTS: The biodistribution, including tumor targeting, was similar for all the radioimmunoconjugates. At 48 h post-injection, the only statistically significant differences in radionuclide uptake (p < 0.05) were between blood, liver, spleen and kidney. For example, liver uptake of [(64)Cu]ch14.18-p-NH(2)-Bn-NOTA was 4.74 ± 0.77 per cent of the injected dose per gram of tissue (%ID/g), and for [(64)Cu]ch14.18-SarAr was 8.06 ± 0.77 %ID/g. Differences in tumor targeting correlated with variations in tumor size rather than which BFC was used. CONCLUSIONS: The results of this study indicate that differences in the thermodynamic stability of these chelator-Cu(II) complexes were not associated with significant differences in uptake of the tracer by the tumor. However, there were significant differences in tracer concentration in other tissues, including those involved in clearance of the radioimmunoconjugate (e.g., liver and spleen).


Asunto(s)
Quelantes/química , Radioisótopos de Cobre , Reactivos de Enlaces Cruzados/química , Inmunoconjugados/química , Inmunoconjugados/farmacocinética , Melanoma/diagnóstico por imagen , Tomografía de Emisión de Positrones , Compuestos de Anilina/química , Animales , Compuestos Bicíclicos Heterocíclicos con Puentes/química , Línea Celular Tumoral , Transformación Celular Neoplásica , Femenino , Compuestos Heterocíclicos/química , Compuestos Heterocíclicos con 1 Anillo/química , Humanos , Inmunoconjugados/inmunología , Melanoma/patología , Ratones
11.
Appl Radiat Isot ; 68(1): 96-100, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19783150

RESUMEN

There is considerable interest in developing an (18)F-labeled PET myocardial perfusion agent. Rhodamine dyes share several properties with (99m)Tc-MIBI, the most commonly used single-photon myocardial perfusion agent, suggesting that an (18)F-labeled rhodamine dye might prove useful for this application. In addition to being lipophilic cations, like (99m)Tc-MIBI, rhodamine dyes are known to accumulate in the myocardium and are substrates for Pgp, the protein implicated in MDR1 multidrug resistance. As the first step in determining whether (18)F-labeled rhodamines might be useful as myocardial perfusion agents for PET, our objective was to develop synthetic methods for preparing the (18)F-labeled compounds so that they could be evaluated in vivo. Rhodamine B was chosen as the prototype compound for development of the synthesis because the ethyl substituents on the amine moieties of rhodamine B protect them from side reactions, thus eliminating the need to include (and subsequently remove) protecting groups. The 2'-[(18)F]fluoroethyl ester of rhodamine B was synthesized by heating rhodamine B lactone with [(18)F]fluoroethyltosylate in acetonitrile at 165 degrees C for 30min using [(18)F]fluoroethyl tosylate, which was prepared by the reaction of ethyleneglycol ditosylate with Kryptofix 2.2.2, K(2)CO(3), and [(18)F]NaF in acetonitrile for 10min at 90 degrees C. The product was purified by semi-preparative HPLC to produce the 2'-[(18)F]fluoroethylester in >97% radiochemical purity with a specific activity of 1.3GBq/mumol, an isolated decay corrected yield of 35%, and a total synthesis time of 90min.


Asunto(s)
Radioisótopos de Flúor/química , Rodaminas/síntesis química , Animales , Marcaje Isotópico , Ratones , Imagen de Perfusión Miocárdica/métodos , Tomografía de Emisión de Positrones/métodos , Radiofármacos/síntesis química , Rodaminas/farmacocinética
12.
Genes Dev ; 22(12): 1662-76, 2008 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-18559481

RESUMEN

Osteosarcoma is the most common primary malignant tumor of bone. Analysis of familial cancer syndromes and sporadic cases has strongly implicated both p53 and pRb in its pathogenesis; however, the relative contribution of these mutations to the initiation of osteosarcoma is unclear. We describe here the generation and characterization of a genetically engineered mouse model in which all animals develop short latency malignant osteosarcoma. The genetically engineered mouse model is based on osteoblast-restricted deletion of p53 and pRb. Osteosarcoma development is dependent on loss of p53 and potentiated by loss of pRb, revealing a dominance of p53 mutation in the development of osteosarcoma. The model reproduces many of the defining features of human osteosarcoma including cytogenetic complexity and comparable gene expression signatures, histology, and metastatic behavior. Using a novel in silico methodology termed cytogenetic region enrichment analysis, we demonstrate high conservation of gene expression changes between murine osteosarcoma and known cytogentically rearranged loci from human osteosarcoma. Due to the strong similarity between murine osteosarcoma and human osteosarcoma in this model, this should provide a valuable platform for addressing the molecular genetics of osteosarcoma and for developing novel therapeutic strategies.


Asunto(s)
Neoplasias Óseas/genética , Genes p53 , Osteosarcoma/genética , Proteína de Retinoblastoma/genética , Animales , Neoplasias Óseas/patología , Análisis por Conglomerados , Simulación por Computador , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Eliminación de Gen , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Integrasas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Modelos Biológicos , Metástasis de la Neoplasia , Análisis de Secuencia por Matrices de Oligonucleótidos , Osteosarcoma/patología , Carga Tumoral/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...