Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Manage ; 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38441648

RESUMEN

Spatial variation in the landscape factors climate, geomorphology, and lithology cause significant differences in water quality issues even when land use pressures are similar. The Physiographic Environment Classification (PEC) classifies landscapes based on their susceptibility to the loss of water quality contaminants. The classification is informed by a conceptual model of the landscape factors that control the hydrochemical maturity of water discharged to streams. In New Zealand, a case study using climatic, topographic, and geological data classified the country into six, 36, and 320 classes at Levels 1 (Climate), 1-2 (Climate + Geomorphology), and 1-3 (Climate + Geomorphology + Lithology), respectively. Variance partitioning analysis applied to New Zealand's national surface water monitoring network (n = 810 stations) assessed the contributions of PEC classes and land use on the spatial variation of water quality contaminants. Compared to land use, PEC explained 0.6× the variation in Nitrate Nitrite Nitrogen (NNN), 1.0× in Total Kjeldahl Nitrogen (TKN), 1.8× in Dissolved Reactive Phosphorus (DRP), 2.3× in Particulate Phosphorus (PP), 2.6× in E. coli, and 4.3× in Turbidity (TURB). Land use explained more variation in riverine NNN, while landscape factors explained more variation in DRP, PP, E. coli, and TURB. Overall, PEC accounted for 2.1× more variation in riverine contaminant concentrations than land use. The differences in contaminant concentrations between PEC classes (p < 0.05), after adjusting for land use, were consistent with the conceptual model of hydrochemical maturation. PEC elucidates underlying causes of contaminant loss susceptibility and can inform targeted land management across multiple scales.

2.
Environ Manage ; 73(1): 1-18, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37845574

RESUMEN

Elevated contaminant levels and hydrological alterations resulting from land use are degrading aquatic ecosystems on a global scale. A range of land management actions may be used to reduce or prevent this degradation. To select among alternative management actions, decision makers require predictions of their effectiveness, their economic impacts, estimated uncertainty in the predictions, and estimated time lags between management actions and environmental responses. There are multiple methods for generating these predictions, but the most rigorous and transparent methods involve quantitative modelling. The challenge for modellers is two-fold. First, they must employ models that represent complex land-water systems, including the causal chains linking land use to contaminant loss and water use, catchment processes that alter contaminant loads and flow regimes, and ecological responses in aquatic environments. Second, they must ensure that these models meet the needs of endusers in terms of reliability, usefulness, feasibility and transparency. Integrated modelling using coupled models to represent the land-water system can meet both challenges and has advantages over alternative approaches. The need for integrated land-water system modelling is growing as the extent and intensity of human land use increases, and regulatory agencies seek more effective land management actions to counter the adverse effects. Here we present recommendations for modelling teams, to help them improve current practices and meet the growing need for land-water system models. The recommendations address several aspects of integrated modelling: (1) assembling modelling teams; (2) problem framing and conceptual modelling; (3) developing spatial frameworks; (4) integrating economic and biophysical models; (5) selecting and coupling models.


Asunto(s)
Ecosistema , Agua , Humanos , Conservación de los Recursos Naturales , Reproducibilidad de los Resultados , Abastecimiento de Agua
3.
MethodsX ; 8: 101522, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34754793

RESUMEN

A method for objectively estimating reference states for suspended fine sediment (turbidity) is presented. To be fit for water policy development and implementation the method had to satisfy four requirements: (1) the method must not be dependent on data from minimally-disturbed reference sites; (2) the method must facilitate characterization of reference states throughout heterogeneous river networks, given patchy data; (3) the classification of reference states must be relevant and legitimate to end-users; (4) the method should provide several classifications of reference states at different spatial resolutions allowing selection of the resolution yielding the most parsimonious classification of reference states throughout the network. Implementing the method involves two stages: (1) Development of a river classification based on sediment supply and retention regimes (defining 'turbidity classes') at multiple spatial resolutions. (2) At each resolution, for each turbidity class, estimation of a reference state based on relationships between turbidity and anthropogenic stressors, then objective selection of the resolution yielding the most parsimonious classification of reference states throughout the network. Implementing the method requires a river network GIS and turbidity data within classes, preferably from monitoring sites spanning the domains of the anthropogenic stressor variables used for model-based estimation of reference states.•A method is presented for estimating reference states for suspended fine sediment (turbidity) throughout spatially heterogeneous river networks.•Development of the method was guided by the requirements of policy analysts during reform of water policy in New Zealand.•The method presented was used to develop fine sediment regulatory thresholds of national water policy.

4.
Environ Manage ; 65(2): 272-285, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31834426

RESUMEN

A common land and water management task is to determine where and by how much source loadings need to change to meet water quality limits in receiving environments. This paper addresses the problem of quantifying changes in loading when limits are specified in many locations in a large and spatially heterogeneous catchment, accounting for cumulative downstream impacts. Current approaches to this problem tend to use either scenario analysis or optimization, which suffer from difficulties of generating scenarios that meet the limits, or high complexity of optimization approaches. In contrast, we present a novel method in which simple catchment models, load limits, upstream/downstream spatial relationships and spatial allocation rules are combined to arrive at source load changes. The process iteratively establishes the critical location (river segment or lake) where the limits are most constraining, and then adjusts sources upstream of the critical location to meet the limit at that location. The method is demonstrated with application to New Zealand (268,000 km2) for nutrients and the microbial indicator E. coli, which was conducted to support policy development regarding water quality limits. The model provided useful insights, such as a source load excess (the need for source load reduction) even after mitigation measures are introduced in order to comply with E. coli limits. On the other hand, there was headroom (ability to increase source loading) for nutrients. The method enables assessment of the necessary source load reductions to achieve water quality limits over broad areas such as large catchments or whole regions.


Asunto(s)
Heurística , Calidad del Agua , Monitoreo del Ambiente , Escherichia coli , Nueva Zelanda , Ríos
5.
Environ Manage ; 51(2): 459-73, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23124551

RESUMEN

The Opuha Dam was designed for water storage, hydropower, and to augment summer low flows. Following its commissioning in 1999, algal blooms (dominated first by Phormidium and later Didymosphenia geminata) downstream of the dam were attributed to the reduced frequency and magnitude of high-flow events. In this study, we used a 20-year monitoring dataset to quantify changes associated with the dam. We also studied the effectiveness of flushing flows to remove periphyton from the river bed. Following the completion of the dam, daily maximum flows downstream have exceeded 100 m(3) s(-1) only three times; two of these floods exceeded the pre-dam mean annual flood of 203 m(3) s(-1) (compared to 19 times >100 m(3) s(-1) and 6 times >203 m(3) s(-1) in the 8 years of record before the dam). Other changes downstream included increases in water temperature, bed armoring, frequency of algal blooms, and changes to the aquatic invertebrate community. Seven experimental flushing flows resulted in limited periphyton reductions. Flood wave attenuation, bed armoring, and a shortage of surface sand and gravel, likely limited the effectiveness of these moderate floods. Floods similar to pre-dam levels may be effective for control of periphyton downstream; however, flushing flows of that magnitude are not possible with the existing dam infrastructure. These results highlight the need for dams to be planned and built with the capacity to provide the natural range of flows for adaptive management, particularly high flows.


Asunto(s)
Monitoreo del Ambiente/métodos , Movimientos del Agua , Nueva Zelanda
6.
Environ Manage ; 42(5): 771-88, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18709410

RESUMEN

Mapped environmental classifications are defined using various procedures, but there has been little evaluation of the differences in their ability to discriminate variation in independent ecological characteristics. We tested the performance of environmental classifications of the streams and rivers of France that had been defined from the same environmental data using geographic regionalization and numerical classification of individual river valley segments. Test data comprised invertebrate assemblages, water chemistry, and hydrological indexes obtained from sites throughout France. Classification performance was measured by analysis of similarity (ANOSIM). Geometric regions defined by a regular grid and without regard to environmental variables and a posteriori classifications based on clustering the test datasets defined lower and upper bounds of performance for a given number of classes. Differences in classification performances were generally small. The ANOSIM statistics for the a posteriori classifications were around twice that of all environmental classifications, including geometrically defined regions. The hydro-ecoregions performed slightly better for the invertebrate data and the network classification performed slightly better for the chemistry and hydrological data. Our results indicate that environmental classifications that are defined using different procedures can be comparable in terms of their ability to discriminate variation of ecological characteristics and that alleged differences in performance arising from different classification procedures can be small relative to unexplained variation. We conclude that definition procedures might have little effect on the performance of large-scale environmental classifications and decisions over which procedures to use should be based primarily on pragmatic considerations.


Asunto(s)
Clasificación/métodos , Ecología/métodos , Ecosistema , Monitoreo del Ambiente/métodos , Ríos/química , Animales , Francia , Sistemas de Información Geográfica , Invertebrados , Movimientos del Agua
7.
Conserv Biol ; 21(2): 365-75, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17391187

RESUMEN

Multivariate classifications of environmental factors are used as frameworks for conservation management. Although classification performance is likely to be sensitive to choice of input variables, these choices have been subjective in most previous studies. We used the Mantel test on a limited set of sites for which biological data were available to iteratively seek a definition of environmental space (i.e., intersite distances calculated with a set of appropriately transformed and weighted environmental variables) that had maximal correlation with the same sites described in a biological space. The procedure was used to select input variables for a classification of New Zealand's rivers that discriminates variation in fish communities for biodiversity management. The classification performed (i.e., discriminated biological variation) better than classifications with subjectively chosen variables. The inherently linear measures of environmental distance that underlie multivariate environmental classifications mean that they will perform best if they are defined based on variables for which there is a linear variation in the biological community throughout the entire range of the variable. Classification performance will therefore be improved when variables that have nonlinear relationships with biological variation are transformed to make their relationship with biological turnover more linear and when the contributions of environmental factors that have particularly strong relationships with biological variation are increased by weighting. Our results indicate that attention to the manner in which environmental space is defined improves the efficacy of multivariate classification and other techniques in which the environment is used as a surrogate for biological variation.


Asunto(s)
Clasificación/métodos , Conservación de los Recursos Naturales/métodos , Ambiente , Modelos Teóricos , Análisis Multivariante , Nueva Zelanda
8.
Environ Manage ; 39(1): 12-29, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17123004

RESUMEN

We describe here the development of an ecosystem classification designed to underpin the conservation management of marine environments in the New Zealand region. The classification was defined using multivariate classification using explicit environmental layers chosen for their role in driving spatial variation in biologic patterns: depth, mean annual solar radiation, winter sea surface temperature, annual amplitude of sea surface temperature, spatial gradient of sea surface temperature, summer sea surface temperature anomaly, mean wave-induced orbital velocity at the seabed, tidal current velocity, and seabed slope. All variables were derived as gridded data layers at a resolution of 1 km. Variables were selected by assessing their degree of correlation with biologic distributions using separate data sets for demersal fish, benthic invertebrates, and chlorophyll-a. We developed a tuning procedure based on the Mantel test to refine the classification's discrimination of variation in biologic character. This was achieved by increasing the weighting of variables that play a dominant role and/or by transforming variables where this increased their correlation with biologic differences. We assessed the classification's ability to discriminate biologic variation using analysis of similarity. This indicated that the discrimination of biologic differences generally increased with increasing classification detail and varied for different taxonomic groups. Advantages of using a numeric approach compared with geographic-based (regionalisation) approaches include better representation of spatial patterns of variation and the ability to apply the classification at widely varying levels of detail. We expect this classification to provide a useful framework for a range of management applications, including providing frameworks for environmental monitoring and reporting and identifying representative areas for conservation.


Asunto(s)
Clasificación/métodos , Ecosistema , Planificación Ambiental , Biología Marina/clasificación , Conservación de los Recursos Naturales , Monitoreo del Ambiente , Nueva Zelanda , Océanos y Mares
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...