Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Soft Matter ; 20(2): 397-406, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38105746

RESUMEN

The optical properties of liquid crystals serve as the basis for display, diagnostic, and sensing technologies. Such properties are generally controlled by relying on electric fields. In this work, we investigate the effects of microfluidic flows and acoustic fields on the molecular orientation and the corresponding optical response of nematic liquid crystals. Several previously unknown structures are identified, which are rationalized in terms of a state diagram as a function of the strengths of the flow and the acoustic field. The new structures are interpreted by relying on calculations with a free energy functional expressed in terms of the tensorial order parameter, using continuum theory simulations in the Landau-de Gennes framework. Taken together, the findings presented here offer promise for the development of new systems based on combinations of sound, flow, and confinement.

2.
Nat Commun ; 14(1): 7050, 2023 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-37923744

RESUMEN

Active matter demonstrates complex spatiotemporal self-organization not accessible at equilibrium and the emergence of collective behavior. Fluids comprised of microscopic Quincke rollers represent a popular realization of synthetic active matter. Temporal activity modulations, realized by modulated external electric fields, represent an effective tool to expand the variety of accessible dynamic states in active ensembles. Here, we report on the emergence of shockwave patterns composed of coherently moving particles energized by a pulsed electric field. The shockwaves emerge spontaneously and move faster than the average particle speed. Combining experiments, theory, and simulations, we demonstrate that the shockwaves originate from intermittent spontaneous vortex cores due to a vortex meandering instability. They occur when the rollers' translational and rotational decoherence times, regulated by the electric pulse durations, become comparable. The phenomenon does not rely on the presence of confinement, and multiple shock waves continuously arise and vanish in the system.

3.
Soft Matter ; 18(45): 8641-8646, 2022 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-36342339

RESUMEN

Suspensions of microswimmers in liquid crystals demonstrate remarkably complex dynamics and serve as a model system for studying active nematics. So far, experimental realization of microswimmers suspended in liquid crystalline media has relied on biological microorganisms that impose strict limitations on the compatible media and makes it difficult to regulate activity. Here, we demonstrate that acoustically powered bubble microswimmers can efficiently self-propel in a lyotropic liquid crystal. The velocity of the swimmers is controlled by the amplitude of the acoustic field. Histograms of swimming directions with respect to the local nematic field reveal a bimodal distribution: the swimmers tend to either fully align with or swim perpendicular to the director field of the liquid crystal, occasionally switching between these two states. The bubble-induced streaming from a swimmer locally melts the liquid crystal and produces topological defects at the tail of the swimmer. We show that the defect proliferation rate increases with the angle between the swimmer's velocity and the local orientation of the director field.


Asunto(s)
Cristales Líquidos , Cristales Líquidos/química , Modelos Biológicos , Natación , Acústica , Suspensiones
4.
Sci Adv ; 8(26): eabo3604, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35776793

RESUMEN

The emergence of large-scale collective phenomena from simple interactions between individual units is a hallmark of active matter systems. Active colloids with alignment-dominated interparticle interactions tend to develop orientational order and form motile coherent states, such as flocks and swarms. Alternatively, a combination of self-propulsion and excluded-volume interactions results in self-trapping and active phase separation into dense clusters. Here, we reveal unconventional arrested-motility states in ensembles of active discoidal particles powered by induced-charge electrophoresis. Combining experiments and computational modeling, we demonstrate that the shape asymmetry of the particles promotes the hydrodynamically assisted formation of active particles' bound states in a certain range of excitation parameters, ultimately leading to a spontaneous collective state with arrested motility. Unlike the jammed clusters obtained through self-trapping, the arrested-motility phase remains sparse, dynamic, and reconfigurable. The demonstrated mechanism of phase separation seeded by bound state formation in ensembles of oblate active particles is generic and should be applicable to other active colloidal systems.

5.
Phys Rev Lett ; 128(21): 218002, 2022 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-35687470

RESUMEN

Large density fluctuations observed in active systems and hyperuniformity are two seemingly incompatible phenomena. However, the formation of hyperuniform states has been recently predicted in nonequilibrium fluids formed by chiral particles performing circular motion with the same handedness. Here we report evidence of hyperuniformity realized in a chiral active fluid comprised of pear-shaped Quincke rollers of arbitrary handedness. We show that hyperuniformity and large density fluctuations, triggered by dynamic clustering, coexist in this system at different length scales. The system loses its hyperuniformity as the curvature of particles' motion increases, transforming them into localized spinners. Our results experimentally demonstrate a novel hyperuniform active fluid and provide new insights into an interplay between chirality, activity, and hyperuniformity.

6.
Phys Rev Lett ; 128(1): 018004, 2022 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-35061462

RESUMEN

Self-organization phenomena in ensembles of self-propelled particles open pathways to the synthesis of new dynamic states not accessible by traditional equilibrium processes. The challenge is to develop a set of principles that facilitate the control and manipulation of emergent active states. Here, we report that dielectric rolling colloids energized by a pulsating electric field self-organize into alternating square lattices with a lattice constant controlled by the parameters of the field. We combine experiments and simulations to examine spatiotemporal properties of the emergent collective patterns and investigate the underlying dynamics of the self-organization.We reveal the resistance of the dynamic lattices to compression and expansion stresses leading to a hysteretic behavior of the lattice constant. The general mechanism of pattern synthesis and control in active ensembles via temporal modulation of activity can be applied to other active colloidal systems.

7.
Soft Matter ; 17(46): 10536-10544, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34761766

RESUMEN

Actively driven colloids demonstrate complex out-of-equilibrium dynamics often rivaling self-organized patterns and collective behavior observed in living systems. Recent studies revealed the emergence of steady macroscopic states with multiple interacting vortices in an unconfined environment that emerge from the coupling between microscale particle rotation and translation. Yet, insights into the microscopic behavior during the vortex emergence, growth, and formation of a multi-vortical state remain lacking. Here, we investigate in experiments and simulations how the microscale magnetic roller behavior leads to the emergence of seed vortices, their aggregation or annihilation, and the formation of stable large-scale vortical structures. We reveal that the coupling of roller-induced hydrodynamic flows guides the local self-densifications and self-organization of the micro-rollers into seed vortices. The resulting multi-vortical state is sensitive to the external magnetic field amplitude and allows tuning the rollers' number density in a vortex and its characteristic size.

8.
Soft Matter ; 17(18): 4818-4825, 2021 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-33876790

RESUMEN

Active colloidal fluids, biological and synthetic, often demonstrate complex self-organization and the emergence of collective behavior. Spontaneous formation of multiple vortices has been recently observed in a variety of active matter systems, however, the generation and tunability of the active vortices not controlled by geometrical confinement remain challenging. Here, we exploit the persistence length of individual particles in ensembles of active rollers to tune the formation of vortices and to orchestrate their characteristic sizes. We use two systems and employ two different approaches exploiting shape anisotropy or polarization memory of individual units for control of the persistence length. We characterize the dynamics of emergent multi-vortex states and reveal a direct link between the behavior of the persistence length and properties of the emergent vortices. We further demonstrate common features between the two systems including anti-ferromagnetic ordering of the neighboring vortices and active turbulent behavior with a characteristic energy cascade in the particles velocity field energy spectra. Our findings provide insights into the onset of spatiotemporal coherence in active roller systems and suggest a control knob for manipulation of dynamic self-assembly in active colloidal ensembles.

9.
Lab Chip ; 21(1): 215-222, 2021 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-33295921

RESUMEN

Inspired by nature, active matter exemplified by self-organization of motile units into macroscopic structures holds great promise for advanced tunable materials capable of flocking, shape-shifting, and self-healing. Active particles driven by external fields have repeatedly demonstrated potential for complex self-organization and collective behavior, yet how to guide the direction of their collective motion largely remains unexplored. Here, we report a system of microscopic ferromagnetic rollers driven by an alternating magnetic field that demonstrates programmable control of the direction of a self-organized coherent vortical motion (i.e., chirality). Facilitated by a droplet confinement, the rollers get synchronized and display either right- or left-handed spontaneous vortical motion, such that their moving direction determines the vortex chirality. We reveal that one can remotely command a flock of magnetic rollers to switch or maintain its chiral state by modulating a phase shift of the sinusoidal magnetic field powering the active rollers. Building on our findings, we realize a self-assembled remotely controlled micro-pump architecture capable of switching the fluid transport direction on demand. Our studies may stimulate new design strategies for directed transport and flocking robotics at the microscale based on active colloids.

10.
Nat Commun ; 11(1): 4401, 2020 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-32879308

RESUMEN

Active fluids comprised of autonomous spinning units injecting energy and angular momentum at the microscopic level represent a promising platform for active materials design. The complexity of the accessible dynamic states is expected to dramatically increase in the case of chiral active units. Here, we use shape anisotropy of colloidal particles to introduce chiral rollers with activity-controlled curvatures of their trajectories and spontaneous handedness of their motion. By controlling activity through variations of the energizing electric field, we reveal emergent dynamic phases, ranging from a gas of spinners to aster-like vortices and rotating flocks, with either polar or nematic alignment of the particles. We demonstrate control and reversibility of these dynamic states by activity. Our findings provide insights into the onset of spatial and temporal coherence in a broad class of active chiral systems, both living and synthetic, and hint at design pathways for active materials based on self-organization and reconfigurability.

11.
Proc Natl Acad Sci U S A ; 117(18): 9706-9711, 2020 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-32300010

RESUMEN

Active matter, both synthetic and biological, demonstrates complex spatiotemporal self-organization and the emergence of collective behavior. A coherent rotational motion, the vortex phase, is of great interest because of its ability to orchestrate well-organized motion of self-propelled particles over large distances. However, its generation without geometrical confinement has been a challenge. Here, we show by experiments and computational modeling that concentrated magnetic rollers self-organize into multivortex states in an unconfined environment. We find that the neighboring vortices more likely occur with the opposite sense of rotation. Our studies provide insights into the mechanism for the emergence of coherent collective motion on the macroscale from the coupling between microscale rotation and translation of individual active elements. These results may stimulate design strategies for self-assembled dynamic materials and microrobotics.

12.
Sci Adv ; 6(12): eaaz8535, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32219171

RESUMEN

Ensembles of actuated colloids are excellent model systems to explore emergent out-of-equilibrium structures, complex collective dynamics, and design rules for the next generation materials. Here, we demonstrate that ferromagnetic microparticles suspended at an air-water interface and energized by an external rotating magnetic field spontaneously form dynamic ensembles of synchronized spinners in a certain range of the excitation field parameters. Each spinner generates strong hydrodynamic flows, and collective interactions of the multiple spinners promote a formation of dynamic lattices. On the basis of experiments and simulations, we reveal structural transitions from liquid to nearly crystalline states in this novel active spinner material and demonstrate that dynamic spinner lattices are reconfigurable, capable of self-healing behavior and that the transport of embedded inert cargo particles can be remotely tuned by the parameters of the external excitation field. Our findings provide insights into the behavior of active spinner materials with reconfigurable structural order and tunable functionalities.

13.
Langmuir ; 36(25): 6957-6962, 2020 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-31756110

RESUMEN

Active magnetic colloids are capable of rich collective behavior and complex self-organization. The interplay between short- and long-range interactions taking place away from equilibrium often results in a spontaneous formation of localized dynamic microstructures. Here we report a method for guided self-assembly and control of self-organized colloidal vortices emerging in a ferromagnetic particle ensemble energized by a uniaxial alternating (ac) magnetic field. The structure of a vortex composed of rolling magnetic particles can be stabilized and manipulated by means of an additional strongly localized alternating magnetic field provided by a minicoil. By tuning the parameters of the localized field, we effectively control the dimensions and particle number density in the vortex. We find that the roller vortex self-organization is assisted by field-induced magnetic "steering" rather than magnetic field gradients and is only possible while the system is in the active (magnetic rollers) state. We demonstrate that parameters of the emergent vortex are efficiently tuned by a phase shift between alternating magnetic fields. The method for assisted self-organization of rolling magnetic colloids into a vortex with on-demand characteristics suggests a new tool for active matter control and manipulation that may lead to a development of new approaches toward the guided microscopic transport in active particle systems.

14.
Soft Matter ; 15(17): 3612-3619, 2019 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-30973551

RESUMEN

An ensemble of actively rotating ferromagnetic particles is used to realize an active roller gas. Here, we investigate the diffusive properties of such a gas in experiments and simulations. We reveal that ferromagnetic rollers demonstrate a normal (Fickian) diffusion with a characteristic linear growth of the mean-squared displacement, while statistics of displacements stay non-Gaussian. At short times the system has a bimodal distribution of the displacements that transitions with time to a quasi-Gaussian distribution (Gaussian core with overpopulated tails) for a range of studied particle number densities. Inert particles introduced into the active roller gas exhibit similar diffusive behavior. The results provide insights into diffusive properties of active colloidal systems with activity originating from spinning degrees of freedom.

15.
Nat Commun ; 9(1): 4932, 2018 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-30451851

RESUMEN

The original version of this Article contained errors in Fig. 2. In Fig. 2d, the label below the blue circle incorrectly read "Si,a(t) < 0" and should have read "Si,a(t) > 0". Furthermore, the sequence of labels on the side of the bottom three figures panels in Fig. 2d from top to bottom incorrectly read "S9,70 > 0, S9,70 > 0, S9,70 < 0", and should have read "S9,70 < 0, S9,70 > 0, S9,70 < 0". Finally, in the legend to Fig. 2, the scale bar size description "Scale bar: 100µm" was incorrectly placed in the description of panel c, and should have been placed in the description of panel d. These errors have been corrected in both the PDF and HTML versions of the Article.

16.
Nat Commun ; 9(1): 4486, 2018 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-30367049

RESUMEN

A suspension of swimming bacteria is possibly the simplest realization of active matter, i.e. a class of systems transducing stored energy into mechanical motion. Collective swimming of hydrodynamically interacting bacteria resembles turbulent flow. This seemingly chaotic motion can be rectified by a geometrical confinement. Here we report on self-organization of a concentrated suspension of motile bacteria Bacillus subtilis constrained by two-dimensional (2D) periodic arrays of microscopic vertical pillars. We show that bacteria self-organize into a lattice of hydrodynamically bound vortices with a long-range antiferromagnetic order controlled by the pillars' spacing. The patterns attain their highest stability and nearly perfect order for the pillar spacing comparable with an intrinsic vortex size of an unconstrained bacterial turbulence. We demonstrate that the emergent antiferromagnetic order can be further manipulated and turned into a ferromagnetic state by introducing chiral pillars. This strategy can be used to control a wide class of active 2D systems.

17.
Nat Nanotechnol ; 13(7): 560-565, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29892018

RESUMEN

Geometric frustration emerges when local interaction energies in an ordered lattice structure cannot be simultaneously minimized, resulting in a large number of degenerate states. The numerous degenerate configurations may lead to practical applications in microelectronics1, such as data storage, memory and logic2. However, it is difficult to achieve very high degeneracy, especially in a two-dimensional system3,4. Here, we showcase in situ controllable geometric frustration with high degeneracy in a two-dimensional flux-quantum system. We create this in a superconducting thin film placed underneath a reconfigurable artificial-spin-ice structure5. The tunable magnetic charges in the artificial-spin-ice strongly interact with the flux quanta in the superconductor, enabling switching between frustrated and crystallized flux quanta states. The different states have measurable effects on the superconducting critical current profile, which can be reconfigured by precise selection of the spin-ice magnetic state through the application of an external magnetic field. We demonstrate the applicability of these effects by realizing a reprogrammable flux quanta diode. The tailoring of the energy landscape of interacting 'particles' using artificial-spin-ices provides a new paradigm for the design of geometric frustration, which could illuminate a path to control new functionalities in other material systems, such as magnetic skyrmions6, electrons and holes in two-dimensional materials7,8, and topological insulators9, as well as colloids in soft materials10-13.

18.
Nat Commun ; 9(1): 2344, 2018 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-29904114

RESUMEN

Active colloids are an emergent class of out-of-equilibrium materials demonstrating complex collective phases and tunable functionalities. Microscopic particles energized by external fields exhibit a plethora of fascinating collective phenomena, yet mechanisms of control and manipulation of active phases often remains lacking. Here we report the emergence of unconfined macroscopic vortices in a system of ferromagnetic rollers energized by a vertical alternating magnetic field and elucidate the complex nature of a magnetic roller-vortex interactions with inert scatterers. We demonstrate that active self-organized vortices have an ability to spontaneously switch the direction of rotation and move across the surface. We reveal the capability of certain non-active particles to pin the vortex and manipulate its dynamics. Building on our findings, we demonstrate the potential of magnetic roller vortices to effectively capture and transport inert particles at the microscale.

19.
Proc Natl Acad Sci U S A ; 114(49): 12870-12875, 2017 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-29158382

RESUMEN

Colloidal particles subject to an external periodic forcing exhibit complex collective behavior and self-assembled patterns. A dispersion of magnetic microparticles confined at the air-liquid interface and energized by a uniform uniaxial alternating magnetic field exhibits dynamic arrays of self-assembled spinners rotating in either direction. Here, we report on experimental and simulation studies of active turbulence and transport in a gas of self-assembled spinners. We show that the spinners, emerging as a result of spontaneous symmetry breaking of clock/counterclockwise rotation of self-assembled particle chains, generate vigorous vortical flows at the interface. An ensemble of spinners exhibits chaotic dynamics due to self-generated advection flows. The same-chirality spinners (clockwise or counterclockwise) show a tendency to aggregate and form dynamic clusters. Emergent self-induced interface currents promote active diffusion that could be tuned by the parameters of the external excitation field. Furthermore, the erratic motion of spinners at the interface generates chaotic fluid flow reminiscent of 2D turbulence. Our work provides insight into fundamental aspects of collective transport in active spinner materials and yields rules for particle manipulation at the microscale.

20.
Sci Rep ; 7(1): 14726, 2017 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-29116208

RESUMEN

We demonstrate experimentally and in computer simulations that magnetic microfloaters can self-organize into various functional structures while energized by an external alternating (ac) magnetic field. The structures exhibit self-propelled motion and an ability to carry a cargo along a pre-defined path. The morphology of the self-assembled swimmers is controlled by the frequency and amplitude of the magnetic field.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA