Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 16(11)2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38891560

RESUMEN

The Polymers Editorial Office retracts the article, "The Dosidicus gigas Collagen for Scaffold Preparation and Cell Cultivation: Mechanical and Physicochemical Properties, Morphology, Composition and Cell Viability" [...].

2.
Polymers (Basel) ; 15(5)2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36904464

RESUMEN

Directed formation of the structure of the culture of living cells is the most important task of tissue engineering. New materials for 3D scaffolds of living tissue are critical for the mass adoption of regenerative medicine protocols. In this manuscript, we demonstrate the results of the molecular structure study of collagen from Dosidicus gigas and reveal the possibility of obtaining a thin membrane material. The collagen membrane is characterized by high flexibility and plasticity as well as mechanical strength. The technology of obtaining collagen scaffolds, as well as the results of studies of its mechanical properties, surface morphology, protein composition, and the process of cell proliferation on its surface, are shown in the given manuscript. The investigation of living tissue culture grown on the surface of a collagen scaffold by X-ray tomography on a synchrotron source made it possible to remodel the structure of the extracellular matrix. It was found that the scaffolds obtained from squid collagen are characterized by a high degree of fibril ordering and high surface roughness and provide efficient directed growth of the cell culture. The resulting material provides the formation of the extracellular matrix and is characterized by a short time to living tissue sorption.

3.
Rev Sci Instrum ; 93(8): 083903, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-36050063

RESUMEN

This paper presents the results of using laboratory x-ray systems in the study of the crystal structure of anvil made from single-crystal diamond. The system is equipped with an Excillum MetalJet D2 + 70 kV high-brightness x-ray source with a liquid GaIn anode. The x-ray diffraction imaging (topography) technique with the use of a high-resolution x-ray Rigaku camera was applied to analyze crystal structure defects. Two-dimensional images were experimentally recorded using 400 and 111 reflections with a resolution of 1.5 and 5 µm, respectively. These topograms displayed various defects, such as growth striations and dislocations. Possible applications of the proposed laboratory-based optical scheme for high-pressure physics are discussed and future improvements to the setup are suggested.

4.
J Synchrotron Radiat ; 29(Pt 3): 711-720, 2022 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-35511004

RESUMEN

The X-ray reflectivity technique can provide out-of-plane electron-density profiles of surfaces, interfaces, and thin films, with atomic resolution accuracy. While current methodologies require high surface flatness, this becomes challenging for naturally curved surfaces, particularly for liquid metals, due to the very high surface tension. Here, the development of X-ray reflectivity measurements with beam sizes of a few tens of micrometres on highly curved liquid surfaces using a synchrotron diffractometer equipped with a double crystal beam deflector is presented. The proposed and developed method, which uses a standard reflectivity θ-2θ scan, is successfully applied to study in situ the bare surface of molten copper and molten copper covered by a graphene layer grown in situ by chemical vapor deposition. It was found that the roughness of the bare liquid surface of copper at 1400 K is 1.25 ± 0.10 Å, while the graphene layer is separated from the liquid surface by a distance of 1.55 ± 0.08 Šand has a roughness of 1.26 ± 0.09 Å.

5.
J Synchrotron Radiat ; 29(Pt 2): 369-376, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35254299

RESUMEN

A way has been developed to measure the unit-cell parameters of a single crystal just from an energy scan with X-rays, even when the exact energy of the X-rays is not well defined due to an error in the pitch angle of the monochromator. The precision of this measurement reaches da/a ∼ 1 × 10-5. The method is based on the analysis of diffraction losses of the beam, transmitted through a single crystal (the so-called `glitch effect'). This method can be easily applied to any transmissive X-ray optical element made of single crystals (for example, X-ray lenses). The only requirements are the possibility to change the energy of the generated X-ray beam and some intensity monitor to measure the transmitted intensity. The method is agnostic to the error in the monochromator tuning and it can even be used for determination of the absolute pitch (or 2θ) angle of the monochromator. Applying the same method to a crystal with well known lattice parameters allows determination of the exact cell parameters of the monochromator at any energy.

6.
J Synchrotron Radiat ; 28(Pt 1): 104-110, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33399558

RESUMEN

In this manuscript, characterization of single-crystalline (111) plates prepared from type-Ib diamonds with a nitrogen content of 100-150 ppm by means of high-resolution rocking-curve imaging (RCI) is reported. Contrary to common opinion regarding the intrinsically poor diffraction quality of type-I diamonds, RCI showed the presence of nearly defect-free areas of several millimetres squared in the central part of the diamond plates. The observed broadening of the rocking curves is a result of the cutting and polishing processes, causing strains around the edges of the plates and rare defects. An improvement of the preparation technique will thus allow single-crystalline diamond plates to be made for Laue and Bragg monochromators and beam splitters from type-Ib material with areas large enough to be used as optical elements at fourth-generation synchrotron facilities.

7.
Opt Express ; 28(4): 4773-4785, 2020 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-32121709

RESUMEN

We demonstrate that ion-beam lithography can be applied to the fabrication of rotationally parabolic refractive diamond X-ray micro-lenses that are of interest to the field of high-resolution X-ray focusing and microscopy. Three single half-lenses with curvature radii of 4.8 µm were produced and stacked to form a compound refractive lens, which provided diffraction-limited focusing of X-ray radiation at the P14 beamline of PETRA-III (DESY). As shown with SEM, the lenses are free of expressed low- and high-frequency shape modulations with a figure error of < 200 nm and surface roughness of 30 nm. Precise micro-manipulation and stacking of individual lenses are demonstrated, which opens up new opportunities for compact X-ray microscopy with nanometer resolution.

8.
J Synchrotron Radiat ; 27(Pt 1): 44-50, 2020 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-31868735

RESUMEN

Beryllium is one of the most transparent materials to hard X-ray radiation and, as a direct consequence, it is the main material for the fabrication of X-ray refractive optics and instrumentation for synchrotron radiation sources and free-electron laser facilities. However, it is known that almost all beryllium currently in use is polycrystalline material. In this paper, the influence of the microstructure of different beryllium grades on the optical properties of X-ray refractive lenses is studied. The experiments were performed at the ESRF ID06 beamline in X-ray coherent transmission microscopy mode in the near- and far-fields. Two sets of refractive lenses made of beryllium O-30-H and IS-50M grades with different internal microstructure were used. It was found that both beryllium grades have a strongly inhomogeneous structure, which inevitably produces speckle patterns under coherent illumination in imaging experiments. It was shown that fine-grained beryllium O-30-H is better suited for imaging applications, whereas beryllium IS-50M with a relatively large grain microstructure is more appropriate for focusing and collimation of X-rays. A discussion on the requirements for X-ray optical materials used at the third- and fourth-generation synchrotrons is also presented.

9.
Acta Crystallogr D Struct Biol ; 75(Pt 11): 947-958, 2019 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-31692469

RESUMEN

For the extraction of the best possible X-ray diffraction data from macromolecular crystals, accurate positioning of the crystals with respect to the X-ray beam is crucial. In addition, information about the shape and internal defects of crystals allows the optimization of data-collection strategies. Here, it is demonstrated that the X-ray beam available on the macromolecular crystallography beamline P14 at the high-brilliance synchrotron-radiation source PETRA III at DESY, Hamburg, Germany can be used for high-energy phase-contrast microtomography of protein crystals mounted in an optically opaque lipidic cubic phase matrix. Three-dimensional tomograms have been obtained at X-ray doses that are substantially smaller and on time scales that are substantially shorter than those used for diffraction-scanning approaches that display protein crystals at micrometre resolution. Adding a compound refractive lens as an objective to the imaging setup, two-dimensional imaging at sub-micrometre resolution has been achieved. All experiments were performed on a standard macromolecular crystallography beamline and are compatible with standard diffraction data-collection workflows and apparatus. Phase-contrast X-ray imaging of macromolecular crystals could find wide application at existing and upcoming low-emittance synchrotron-radiation sources.


Asunto(s)
Cristalografía por Rayos X/métodos , Muramidasa/química , Difracción de Rayos X/métodos
10.
J Synchrotron Radiat ; 26(Pt 4): 1208-1212, 2019 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-31274445

RESUMEN

A new ultra-compact transfocator (UCTF) based on X-ray compound refractive lenses (CRLs) is presented. The device can be used to change the number of one- and two-dimensional focusing CRLs by moving the individual parabolic lenses one-by-one independently, thus providing permanent energy and focal-length tunability for scanning and full-field X-ray microscopy applications. The small overall size and light weight of the device allow it to be integrated in any synchrotron beamline, while even simplifying the experimental layout. The UCTF was tested at the Excillium MetalJet microfocus X-ray source and at the P14 EMBL (PETRA-III) beamline, demonstrating high mechanical stability and lens positioning repeatability.

11.
J Synchrotron Radiat ; 26(Pt 3): 714-719, 2019 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-31074435

RESUMEN

Full-field X-ray imaging and microscopy with polymer compound refractive nano-lenses is demonstrated. Experiments were carried out at beamline ID13 at the European Synchrotron and yielded a resolution of 100 nm. The lenses were demonstrated to be functioning even after an absorbed dose of ∼107 Gy. This article also discusses issues related to lens aberrations, astigmatism and radiation stability, and thus ways of improving the lens further are considered. Polymer nano-lenses are versatile and are promissing for nano-focusing and compact X-ray microscopy.

12.
J Synchrotron Radiat ; 26(Pt 1): 109-118, 2019 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-30655475

RESUMEN

Single-crystal diamond stands out among all the candidate materials that could be exploited to fabricate compound refractive lenses (CRLs) owing to its extremely stable properties. Among all related experimental features, beam divergence, χ-angles relative to the incoming beam in Eulerian geometry and different positions of the X-ray beam relative to the lens geometry may influence the transmission energy spectrum of CRLs. In addition, the orientation of the single-crystal diamond sample may also affect the glitches significantly. To verify these initial assumptions, two experiments, an energy scan and an ω-scan, were set up by employing a polished diamond plate consisting of five biconcave lenses. The results show that beam divergence does not affect the spectrum, nor do χ-angles when ω is set to zero. Nevertheless, different incident positions have an appreciable effect on the transmission spectrum, in particular the `strengths' of the glitches. This is attributed to absorption. The ω-scan setup is capable of determining the so-called orientation matrix, which may be used to predict both `energy positions' and `strengths' of the glitches.

13.
Ultramicroscopy ; 184(Pt A): 267-273, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29024877

RESUMEN

The current work represents the first implementation of Zernike phase contrast for compound refractive lens based x-ray microscopy, and also the first successful Zernike phase contrast experiment at photon energies above 12 keV. Phase contrast was achieved by fitting a compound refractive lens with a circular phase plate. The resolution is demonstrated to be sub-micron, and can be improved using already existing technology. The possibility of combining the technique with polychromatic radiation is considered, and a preliminary test experiment was performed with positive results.

14.
Ultramicroscopy ; 184(Pt B): 1-7, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29059562

RESUMEN

Analytical expressions for the transmission cross-coefficients for x-ray microscopes based on compound refractive lenses are derived based on Gaussian approximations of the source shape and energy spectrum. The effects of partial coherence, defocus, beam convergence, as well as lateral and longitudinal chromatic aberrations are accounted for and discussed. Taking the incoherent limit of the transmission cross-coefficients, a compact analytical expression for the modulation transfer function of the system is obtained, and the resulting point, line and edge spread functions are presented. Finally, analytical expressions for optimal numerical aperture, coherence ratio, and bandwidth are given.

15.
J Synchrotron Radiat ; 24(Pt 4): 775-780, 2017 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-28664884

RESUMEN

Beryllium, being one of the most transparent materials to X-ray radiation, has become the material of choice for X-ray optics instrumentation at synchrotron radiation sources and free-electron laser facilities. However, there are concerns due to its high toxicity and, consequently, there is a need for special safety regulations. The authors propose to apply protective coatings in order to seal off beryllium from the ambient atmosphere, thus preventing degradation processes providing additional protection for users and prolonging the service time of the optical elements. This paper presents durability test results for Be windows coated with atomic-layer-deposition alumina layers run at the European Synchrotron Radiation Facility. Expositions were performed under monochromatic, pink and white beams, establishing conditions that the samples could tolerate without radiation damage. X-ray treatment was implemented in various environments, i.e. vacuum, helium, nitrogen, argon and dry air at different pressures. Post-process analysis revealed their efficiency for monochromatic and pink beams.

16.
J Synchrotron Radiat ; 24(Pt 1): 103-109, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-28009551

RESUMEN

Linear parabolic diamond refractive lenses are presented, designed to withstand high thermal and radiation loads coming from upgraded accelerator X-ray sources. Lenses were manufactured by picosecond laser treatment of a high-quality single-crystal synthetic diamond. Twelve lenses with radius of curvature at parabola apex R = 200 µm, geometrical aperture A = 900 µm and length L = 1.5 mm were stacked as a compound refractive lens and tested at the ESRF ID06 beamline. A focal spot of size 2.2 µm and a gain of 20 were measured at 8 keV. The lens profile and surface quality were estimated by grating interferometry and X-ray radiography. In addition, the influence of X-ray glitches on the focusing properties of the compound refractive lens were studied.

17.
J Synchrotron Radiat ; 23(Pt 6): 1315-1322, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27787237

RESUMEN

A quantitative analysis of the crucial characteristics of currently used and promising materials for X-ray refractive optics is performed in the extended energy range 8-100 keV. According to the examined parameters, beryllium is the material of choice for X-ray compound refractive lenses (CRLs) in the energy range 8-25 keV. At higher energies the use of CRLs made of diamond and the cubic phase of boron nitride (c-BN) is beneficial. It was demonstrated that the presence of the elements of the fourth (or higher) period has a fatal effect on the functional X-ray properties even if low-Z elements dominate in the compound, like in YB66. Macroscopic properties are discussed: much higher melting points and thermal conductivities of C and c-BN enable them to be used at the new generation of synchrotron radiation sources and X-ray free-electron lasers. The role of crystal and internal structure is discussed: materials with high density are preferable for refractive applications while less dense phases are suitable for X-ray windows. Single-crystal or amorphous glass-like materials based on Li, Be, B or C that are free of diffuse scattering from grain boundaries, voids and inclusions are the best candidates for applications of highly coherent X-ray beams.

18.
J Synchrotron Radiat ; 23(Pt 5): 1104-9, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27577763

RESUMEN

A novel high-energy multi-lens interferometer consisting of 30 arrays of planar compound refractive lenses is reported. Under coherent illumination each lens array creates a diffraction-limited secondary source. Overlapping such coherent beams produces an interference pattern demonstrating strong longitudinal functional dependence. The proposed multi-lens interferometer was tested experimentally at the 100 m-long ID11 ESRF beamline in the X-ray energy range from 30 to 65 keV. The interference pattern generated by the interferometer was recorded at fundamental and fractional Talbot distances. An effective source size (FWHM) of the order of 15 µm was determined from the first Talbot image, proving the concept that the multi-lens interferometer can be used as a high-resolution tool for beam diagnostics.

19.
Opt Express ; 24(12): 13679-86, 2016 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-27410382

RESUMEN

We have implemented a modified Young's double slit experiment using pinholes with tunable separation distance coupled with compound refractive lens for hard X-ray spatial coherence characterization. Varying distance between the apertures provides a high sensitivity to the determination of spatial coherence across a wide range of experimental parameters. The use of refractive lenses as a Fourier transformer ensures far field registration conditions and allows the realization of a very compact experimental setup in comparison with the classical Young technique and its derivatives. The tunable double aperture interferometer was experimentally tested at the ESRF ID06 beamline in the energy range from 8 to 25 keV. The spatial coherence and the source size were measured by evaluating the visibility of the interference fringes at various separation distances between the apertures and this value agrees very well with the data obtained by other techniques. The proposed scheme can be used for comprehensive characterization of the coherence properties of the source on low emittance synchrotrons in the hard X-ray region.

20.
Sci Adv ; 2(7): e1600341, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27453944

RESUMEN

Studies of materials' properties at high and ultrahigh pressures lead to discoveries of unique physical and chemical phenomena and a deeper understanding of matter. In high-pressure research, an achievable static pressure limit is imposed by the strength of available strong materials and design of high-pressure devices. Using a high-pressure and high-temperature technique, we synthesized optically transparent microballs of bulk nanocrystalline diamond, which were found to have an exceptional yield strength (~460 GPa at a confining pressure of ~70 GPa) due to the unique microstructure of bulk nanocrystalline diamond. We used the nanodiamond balls in a double-stage diamond anvil cell high-pressure device that allowed us to generate static pressures beyond 1 TPa, as demonstrated by synchrotron x-ray diffraction. Outstanding mechanical properties (strain-dependent elasticity, very high hardness, and unprecedented yield strength) make the nanodiamond balls a unique device for ultrahigh static pressure generation. Structurally isotropic, homogeneous, and made of a low-Z material, they are promising in the field of x-ray optical applications.


Asunto(s)
Nanodiamantes/química , Dureza , Microscopía Electrónica de Transmisión , Presión , Temperatura , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...