Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Toxins (Basel) ; 15(7)2023 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-37505697

RESUMEN

Crop contamination by aflatoxin B1 (AFB1), an Aspergillus-flavus-produced toxin, is frequently observed in tropical and subtropical regions. This phenomenon is emerging in Europe, most likely as a result of climate change. Alternative methods, such as biocontrol agents (BCAs), are currently being developed to reduce the use of chemicals in the prevention of mycotoxin contamination. Actinobacteria are known to produce many bioactive compounds, and some of them can reduce in vitro AFB1 concentration. In this context, the present study aims to analyze the effect of a cell-free supernatant (CFS) from Streptomyces roseolus culture on the development of A. flavus, as well as on its transcriptome profile using microarray assay and its impact on AFB1 concentration. Results demonstrated that in vitro, the S. roseolus CFS reduced the dry weight and conidiation of A. flavus from 77% and 43%, respectively, and was therefore associated with a reduction in AFB1 concentration reduction to levels under the limit of quantification. The transcriptomic data analysis revealed that 5198 genes were differentially expressed in response to the CFS exposure and among them 5169 were downregulated including most of the genes involved in biosynthetic gene clusters. The aflatoxins' gene cluster was the most downregulated. Other gene clusters, such as the aspergillic acid, aspirochlorine, and ustiloxin B gene clusters, were also downregulated and associated with a variation in their concentration, confirmed by LC-HRMS.


Asunto(s)
Aflatoxinas , Aspergillus flavus , Aspergillus flavus/genética , Aflatoxina B1/análisis , Transcriptoma
2.
Antibiotics (Basel) ; 11(9)2022 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-36139927

RESUMEN

Salmonella continues to be a major threat to public health, especially with respect to strains from a poultry origin. In recent years, an increasing trend of antimicrobial resistance (AMR) in Salmonella spp. was observed due to the misuse of antibiotics. Among the approaches advised for overcoming AMR, probiotics from the Lactobacillus genus have increasingly been considered for use as effective prophylactic and therapeutic agents belonging to the indigenous microbiota. In this study, we isolated lactobacilli from the ilea and ceca of hens and broilers in order to evaluate their potential probiotic properties. Four species were identified as Limosilactobacillusreuteri (n = 22, 45.8%), Ligilactobacillussalivarius (n = 20, 41.6%), Limosilactobacillus fermentum (n = 2, 4.2%) and Lactobacillus crispatus (n = 1, 2%), while three other isolates (n = 3, 6.25%) were non-typable. Eight isolates, including Ligilactobacillussalivarius (n = 4), Limosilactobacillusreuteri (n = 2), L. crispatus (n = 1) and Lactobacillus spp. (n = 1) were chosen on the basis of their cell surface hydrophobicity and auto/co-aggregation ability for further adhesion assays using the adenocarcinoma cell line Caco-2. The adhesion rate of these strains varied from 0.53 to 10.78%. Ligilactobacillussalivarius A30/i26 and 16/c6 and Limosilactobacillus reuteri 1/c24 showed the highest adhesion capacity, and were assessed for their ability to compete in and exclude the adhesion of Salmonella to the Caco-2 cells. Interestingly, Ligilactobacillussalivarius 16/c6 was shown to significantly exclude the adhesion of the three Salmonella serotypes, S. Enteritidis, S. Infantis and S. Kentucky ST 198, to Caco-2 cells. The results of the liquid co-culture assays revealed a complete inhibition of the growth of Salmonella after 24 h. Consequently, the indigenous Ligilactobacillussalivarius 16/c6 strain shows promising potential for use as a preventive probiotic added directly to the diet for the control of the colonization of Salmonella spp. in poultry.

3.
Arch Toxicol ; 94(9): 3173-3184, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32617661

RESUMEN

The incidence of inflammatory bowel diseases (IBD) is increasing in both Western and developing countries. IBD are multifactorial disorders involving complex interactions between genetic, immune, and environmental factors such as exposure to food contaminants. Deoxynivalenol (DON) is the most prevalent mycotoxin that contaminates staple food and induces intestinal breakdown and inflammatory response. To delineate the role of DON oral exposure in IBD, we used a Dextran sulfate sodium (DSS) colitis model in rats fed with a DON-contaminated diet or a control diet for 4 weeks. Colitis was induced in the 4th week by increasing concentrations of DSS in the drinking water (0, 2, 3 or 5%). DON exacerbated body weight loss and accelerated the appearance of symptoms in animals treated with DSS. DON increased morphological damage, pro-inflammatory markers (myeloperoxidase, CXCL-1 and IL-1ß) and immune cell responses. In lamina propria of the rat with colitis, DON increased adaptive and innate immune responses after anti-CD3/28 or LPS stimulation, respectively. In the spleen, DON increased IFNγ secretion and reduced Treg populations. Interestingly, De-epoxy-DON (DOM-1) a detoxified form of DON did not have any consequences on colitis. These results suggest that DON is a risk factor in the onset of IBD.


Asunto(s)
Contaminación de Alimentos , Enfermedades Inflamatorias del Intestino/inducido químicamente , Micotoxinas/toxicidad , Linfocitos T Reguladores/efectos de los fármacos , Tricotecenos/toxicidad , Animales , Colitis , Sulfato de Dextran , Dieta , Modelos Animales de Enfermedad , Intestinos , Masculino , Ratas
4.
Environ Int ; 137: 105568, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32106047

RESUMEN

Aflatoxin B1 (AFB1) is the most potent carcinogen among mycotoxins. Its biosynthesis involves the formation of versicolorin A (VerA), whose chemical structure shares many features with AFB1. Our data revealed significant levels of VerA in foodstuff from Central Asia and Africa. Given this emerging food risk, it was of prime interest to compare the toxic effects of the two mycotoxins against cells originating from the intestinal tract. We used human colon cell lines (Caco-2, HCT116) to investigate the cytotoxic process induced by the two mycotoxins. Contrary to AFB1, a low dose of VerA (1 µM) disturbed the expression level of thousands of genes (18 002 genes). We show that the cytotoxic effects of low doses of VerA (1-20 µM) were stronger than the same low doses of AFB1 in both Caco-2 and HCT116 cell lines. In Caco-2 cells, VerA induced DNA strand breaks that led to apoptosis and reduced DNA replication of dividing cells, consequently inhibiting cell proliferation. Although VerA was able to induce the p53 signaling pathway in p53 wild-type HCT116 cells, its toxicity process did not mainly rely on p53 expression since similar cytotoxic effects were also observed in HCT116 cells that do not express p53. In conclusion, this study provides evidence of the risk of food contamination by VerA and shed light on its toxicological effect on human colon cells.


Asunto(s)
Antraquinonas , Intestinos/química , Micotoxinas , Aflatoxina B1 , Antraquinonas/farmacocinética , Antraquinonas/toxicidad , Células CACO-2 , Carcinógenos , Humanos , Micotoxinas/farmacocinética , Micotoxinas/toxicidad
5.
Saudi Pharm J ; 27(1): 56-65, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30662307

RESUMEN

The actinobacterium strain ABH26 closely related to Saccharothrix xinjiangensis, isolated from an Algerian Saharan soil sample, exhibited highly antagonist activity against Gram-positive bacteria, yeasts and filamentous fungi. Its ability to produce antimicrobial compounds was investigated using several solid culture media. The highest antimicrobial activity was obtained on Bennett medium. The antibiotics secreted by strain ABH26 on Bennett medium were extracted by methanol and purified by reverse-phase HPLC using a C18 column. The chemical structures of the compounds were determined after spectroscopic (1H NMR, 13C NMR, 1H-1H COSY and 1H-13C HMBC spectra), and spectrometric (mass spectrum) analyses. Two new cyanogriside antibiotics named cyanogriside I (1) and cyanogriside J (2), were characterized along with three known caerulomycins, caerulomycin A (3), caerulomycin F (4) and caerulomycinonitrile (5). This is the first report of cyanogrisides and caerulomycins production by a member of the Saccharothrix genus. The minimum inhibitory concentrations (MIC) of these antibiotics were determined against pathogenic microorganisms.

6.
Toxins (Basel) ; 10(11)2018 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-30380704

RESUMEN

Crop contamination by aflatoxin B1 is a current problem in tropical and subtropical regions. In the future, this contamination risk may be expanded to European countries due to climate change. The development of alternative strategies to prevent mycotoxin contamination that further contribute to the substitution of phytopharmaceutical products are thus needed. For this, a promising method resides in the use of biocontrol agents. Several actinobacteria strains have demonstrated to effectively reduce the aflatoxin B1 concentration. Nevertheless, the molecular mechanism of action by which these biological agents reduce the mycotoxin concentration has not been determined. The aim of the present study was to test the potential use of Streptomyces roseolus as a biocontrol agent against aflatoxin B1 contamination. Co-cultures with Aspergillus flavus were conducted, and the molecular fungal response was investigated through analyzing the q-PCR expression of 65 genes encoding relevant fungal functions. Moreover, kojic and cyclopiazonic acid concentrations, as well as morphological fungal changes were also analyzed. The results demonstrated that reduced concentrations of aflatoxin B1 and kojic acid were respectively correlated with the down-regulation of the aflatoxin B1 gene cluster and kojR gene expression. Moreover, a fungal hypersporulated phenotype and a general over-expression of genes involved in fungal development were observed in the co-culture condition.


Asunto(s)
Aflatoxina B1/biosíntesis , Aspergillus flavus , Control Biológico de Vectores , Streptomyces/fisiología , Aspergillus flavus/genética , Aspergillus flavus/metabolismo , Técnicas de Cocultivo , Regulación Fúngica de la Expresión Génica , Genes Fúngicos , Indoles/metabolismo , Pironas/metabolismo , Streptomyces/metabolismo
7.
Toxins (Basel) ; 10(4)2018 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-29587362

RESUMEN

Ochratoxin A (OTA) is a mycotoxin produced by several species of Aspergillus and Penicillium that contaminate food and feed raw materials. To reduce OTA contamination, we first tested in vitro, actinobacterial strains as potential biocontrol agents and afterward, through a physical decontamination method using activated carbon fibers (ACFs). Actinobacterial strains were screened for their ability to reduce OTA in solid co-culture with A. carbonarius, which is the major OTA-producing species in European vineyards. Four strains showed a high affinity for removing OTA (67%-83%) with no significant effect on fungal growth (<20%). The mechanism of action was first studied by analyzing the expression of OTA cluster genes (acOTApks, acOTAnrps, acOTAhal) by RT-qPCR showing a drastic reduction in all genes (7-15 times). Second, the ability of these strains to degrade OTA was assessed in vitro on ISP2 solid medium supplemented with OTA (100 µg/L). Two strains reduced OTA to undetectable levels. As for the physical method, high adsorption rates were obtained for ACFs at 0.8 g/L with a 50% adsorption of OTA in red wine by AC15 and 52% in grape juice by AC20 within 24 h. These promising methods could be complementarily applied toward reducing OTA contamination in food chains, which promotes food safety and quality.


Asunto(s)
Contaminación de Alimentos/prevención & control , Ocratoxinas , Actinobacteria/metabolismo , Adsorción , Agentes de Control Biológico , Fibra de Carbono/química , Descontaminación , Ocratoxinas/química , Ocratoxinas/metabolismo
8.
Mol Plant Pathol ; 2018 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-29517851

RESUMEN

Penicillium expansum, the causal agent of blue mould disease, produces the mycotoxins patulin and citrinin amongst other secondary metabolites. Secondary metabolism is associated with fungal development, which responds to numerous biotic and abiotic external triggers. The global transcription factor VeA plays a key role in the coordination of secondary metabolism and differentiation processes in many fungal species. The specific role of VeA in P. expansum remains unknown. A null mutant PeΔveA strain and a complemented PeΔveA:veA strain were generated in P. expansum and their pathogenicity on apples was studied. Like the wild-type and the complemented strains, the null mutant PeΔveA strain was still able to sporulate and to colonize apples, but at a lower rate. However, it could not form coremia either in vitro or in vivo, thus limiting its dissemination from natural substrates. The impact of veA on the expression of genes encoding proteins involved in the production of patulin, citrinin and other secondary metabolites was evaluated. The disruption of veA drastically reduced the production of patulin and citrinin on synthetic media, associated with a marked down-regulation of all genes involved in the biosynthesis of the two mycotoxins. Moreover, the null mutant PeΔveA strain was unable to produce patulin on apples. The analysis of gene expression revealed a global impact on secondary metabolism, as 15 of 35 backbone genes showed differential regulation on two different media. These findings support the hypothesis that VeA contributes to the pathogenicity of P. expansum and modulates its secondary metabolism.

9.
Arch Toxicol ; 91(6): 2455-2467, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27913847

RESUMEN

Patulin is the main mycotoxin contaminating apples. During the brewing of alcoholic beverages, this mycotoxin is degraded to ascladiol, which is also the last precursor of patulin. The present study aims (1) to characterize the last step of the patulin biosynthetic pathway and (2) to describe the toxicity of ascladiol. A patE deletion mutant was generated in Penicillium expansum. In contrast to the wild strain, this mutant does not produce patulin but accumulates high levels of E-ascladiol with few traces of Z-ascladiol. This confirms that patE encodes the patulin synthase involved in the conversion of E-ascladiol to patulin. After purification, cytotoxicities of patulin and E- and Z-ascladiol were investigated on human cell lines from liver, kidney, intestine, and immune system. Patulin was cytotoxic for these four cell lines in a dose-dependent manner. By contrast, both E- and Z-ascladiol were devoid of cytotoxicity. Microarray analyses on human intestinal cells treated with patulin and E-ascladiol showed that the latter, unlike patulin, did not alter the whole human transcription. These results demonstrate that E- and Z-ascladiol are not toxic and therefore patulin detoxification strategies leading to the accumulation of ascladiol are good approaches to limit the patulin risk.


Asunto(s)
Furanos/toxicidad , Patulina/biosíntesis , Patulina/toxicidad , Células CACO-2 , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Furanos/metabolismo , Eliminación de Gen , Genes Fúngicos , Células HEK293 , Células HL-60 , Células Hep G2 , Humanos , Isomerismo , Especificidad de Órganos , Penicillium/genética , Penicillium/metabolismo
10.
Mol Plant Pathol ; 17(6): 920-30, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-26582186

RESUMEN

The blue mould decay of apples is caused by Penicillium expansum and is associated with contamination by patulin, a worldwide regulated mycotoxin. Recently, a cluster of 15 genes (patA-patO) involved in patulin biosynthesis was identified in P. expansum. blast analysis revealed that patL encodes a Cys6 zinc finger regulatory factor. The deletion of patL caused a drastic decrease in the expression of all pat genes, leading to an absence of patulin production. Pathogenicity studies performed on 13 apple varieties indicated that the PeΔpatL strain could still infect apples, but the intensity of symptoms was weaker compared with the wild-type strain. A lower growth rate was observed in the PeΔpatL strain when this strain was grown on nine of the 13 apple varieties tested. In the complemented PeΔpatL:patL strain, the ability to grow normally in apple and the production of patulin were restored. Our results clearly demonstrate that patulin is not indispensable in the initiation of the disease, but acts as a cultivar-dependent aggressiveness factor for P. expansum. This conclusion was strengthened by the fact that the addition of patulin to apple infected by the PeΔpatL mutant restored the normal fungal colonization in apple.


Asunto(s)
Malus/microbiología , Patulina/farmacología , Penicillium/fisiología , Eliminación de Gen , Genes Fúngicos , Prueba de Complementación Genética , Malus/efectos de los fármacos , Mutación/genética , Patulina/biosíntesis , Penicillium/genética , Penicillium/crecimiento & desarrollo , Penicillium/patogenicidad , Enfermedades de las Plantas/microbiología , Virulencia
11.
Int J Food Microbiol ; 189: 51-60, 2014 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-25120234

RESUMEN

Patulin is a polyketide-derived mycotoxin produced by numerous filamentous fungi. Among them, Penicillium expansum is by far the most problematic species. This fungus is a destructive phytopathogen capable of growing on fruit, provoking the blue mold decay of apples and producing significant amounts of patulin. The biosynthetic pathway of this mycotoxin is chemically well-characterized, but its genetic bases remain largely unknown with only few characterized genes in less economic relevant species. The present study consisted of the identification and positional organization of the patulin gene cluster in P. expansum strain NRRL 35695. Several amplification reactions were performed with degenerative primers that were designed based on sequences from the orthologous genes available in other species. An improved genome Walking approach was used in order to sequence the remaining adjacent genes of the cluster. RACE-PCR was also carried out from mRNAs to determine the start and stop codons of the coding sequences. The patulin gene cluster in P. expansum consists of 15 genes in the following order: patH, patG, patF, patE, patD, patC, patB, patA, patM, patN, patO, patL, patI, patJ, and patK. These genes share 60-70% of identity with orthologous genes grouped differently, within a putative patulin cluster described in a non-producing strain of Aspergillus clavatus. The kinetics of patulin cluster genes expression was studied under patulin-permissive conditions (natural apple-based medium) and patulin-restrictive conditions (Eagle's minimal essential medium), and demonstrated a significant association between gene expression and patulin production. In conclusion, the sequence of the patulin cluster in P. expansum constitutes a key step for a better understanding of the mechanisms leading to patulin production in this fungus. It will allow the role of each gene to be elucidated, and help to define strategies to reduce patulin production in apple-based products.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Genes Fúngicos , Patulina/genética , Penicillium/genética , Secuencia de Bases , Codón , Cartilla de ADN/química , Frutas/microbiología , Malus/microbiología , Anotación de Secuencia Molecular , Datos de Secuencia Molecular , Familia de Multigenes , Patulina/biosíntesis , Penicillium/metabolismo , Reacción en Cadena de la Polimerasa/métodos , Homología de Secuencia de Ácido Nucleico
12.
Int J Food Microbiol ; 171: 77-83, 2014 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-24334092

RESUMEN

Patulin is a mycotoxin produced by fungal genera such as Aspergillus, Penicillium and Byssochlamys. It induces neurological, gastrointestinal and immunological effects, which is why patulin belongs to a short list of mycotoxins whose level in food is regulated in many countries around the world. Recently, a cluster gathering 15 genes involved in the biosynthesis of patulin has been identified in Aspergillus clavatus, but so far, only 4 genes encoding 6-methylsalicylic acid synthase, m-cresol hydroxylase, m-hydroxybenzyl alcohol hydroxylase and isoepoxydon dehydrogenase have been characterized. Previous studies have shown the involvement of a decarboxylase in the transformation of 6-methylsalicylic acid, the first stable patulin precursor, into m-cresol. In this study a putative decarboxylase gene, PatG, was identified in the genome sequence of A. clavatus. This gene is located near two P450 cytochrome genes PatH and PatI responsible respectively for the hydroxylation of m-cresol and m-hydroxybenzyl alcohol. This decarboxylase encoded by PatG (ACLA_093620) consists of 325 amino acids. The search for putative conserved domain revealed that the gene product belongs to the AminoCarboxyMuconate Semialdehyde Decarboxylase (ACMSD) related protein family. This family includes decarboxylases such as the γ-resorcylate decarboxylase or o-pyrocatechuate decarboxylase. The substrates of these enzymes display strong structural similarities with 6-methylsalicylic acid. PatG was strongly expressed during patulin production whereas it was very weakly expressed in non-patulin permissive conditions. The coding sequence was used to enable heterologous expression of functional enzymes in Saccharomyces cerevisiae. The presence of decarboxylase was confirmed by Western blot. The bioconversion assays showed that PATG catalyzed the decarboxylation of 6-methylsalicylic acid into m-cresol. These results confirm for the first time that 6-methylsalicylic acid is the substrate for PATG, the 6-methylsalicylic acid decarboxylase. With this study, the four genes involved in the four first steps of patulin biosynthesis pathway (acetate→gentisyl alcohol) are now identified.


Asunto(s)
Aspergillus/enzimología , Aspergillus/genética , Carboxiliasas/genética , Carboxiliasas/metabolismo , Patulina/biosíntesis , Aspergillus/química , Aspergillus/clasificación , Carboxiliasas/química , Sistema Enzimático del Citocromo P-450/metabolismo , Microbiología de Alimentos , Regulación Fúngica de la Expresión Génica , Datos de Secuencia Molecular , Patulina/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...